Interleaved DC-DC Converter with Wide Band Gap Devices and ZVT Switching for Flexible DC-Link in Electric Vehicle Powertrains

157468-Thumbnail Image.png
Description
The following report details the motivation, design, analysis, simulation and hardware implementation of a DC/DC converter in EV drivetrain architectures. The primary objective of the project was to improve overall system efficiency in an EV drivetrain. The methodology employed to

The following report details the motivation, design, analysis, simulation and hardware implementation of a DC/DC converter in EV drivetrain architectures. The primary objective of the project was to improve overall system efficiency in an EV drivetrain. The methodology employed to this end required a variable or flexible DC-Link voltage at the input of the inverter stage. Amongst the several advantages associated with such a system are the independent optimization of the battery stack and the inverter over a wide range of motor operating conditions. The incorporation of a DC/DC converter into the drivetrain helps lower system losses but since it is an additional component, a number of considerations need to be made during its design. These include stringent requirements on power density, converter efficiency and reliability.

These targets for the converter are met through a number of different ways. The switches used are Silicon Carbide FETs. These are wide band gap (WBG) devices that can operate at high frequencies and temperatures. Since they allow for high frequency operation, a switching frequency of 250 khz is proposed and implemented. This helps with power density by reducing the size of passive components. High efficiencies are made possible by using a simple soft switching technique by augmenting the DC/DC converter with an auxiliary branch to enable zero voltage transition.

The efficacy of the approach is tested through simulation and hardware implementation of two different prototypes. The Gen-I prototype was a single soft switched synchronous boost converter rated at 2.5kw. Both the motoring mode and regenerative modes of operation (Boost and Buck) were hardware tested for over 2kw and efficiency results of over 98.15% were achieved. The Gen-II prototype and the main focus of this work is an interleaved soft switched synchronous boost converter. This converter has been implemented in hardware as well and has been tested at 6.7kw and an efficiency of over 98% has been achieved in the boost mode of operation.
Date Created
2019
Agent