Anticipatory muscle responses for transitioning between rigid surface and surfaces of different compliance:: towards smart ankle-foot prostheses
Description
Locomotion is of prime importance in enabling human beings to effectively respond
in space and time to meet different needs. Approximately 2 million Americans live
with an amputation with most of those amputations being of the lower limbs. To
advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt
performance at a level of intelligence seen in human walking. As such, this thesis
focuses on the mechanisms involved during human walking, while transitioning from
rigid to compliant surfaces such as from pavement to sand, grass or granular media.
Utilizing a unique tool, the Variable Stiffness Treadmill (VST), as the platform for
human walking, rigid to compliant surface transitions are simulated. The analysis of
muscular activation during the transition from rigid to different compliant surfaces
reveals specific anticipatory muscle activation that precedes stepping on a compliant
surface. There is also an indication of varying responses for different surface stiffness
levels. This response is observed across subjects. Results obtained are novel and
useful in establishing a framework for implementing control algorithm parameters to
improve powered ankle prosthesis. With this, it is possible for the prosthesis to adapt
to a new surface and therefore resulting in a more robust smart powered lower limb
prosthesis.
in space and time to meet different needs. Approximately 2 million Americans live
with an amputation with most of those amputations being of the lower limbs. To
advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt
performance at a level of intelligence seen in human walking. As such, this thesis
focuses on the mechanisms involved during human walking, while transitioning from
rigid to compliant surfaces such as from pavement to sand, grass or granular media.
Utilizing a unique tool, the Variable Stiffness Treadmill (VST), as the platform for
human walking, rigid to compliant surface transitions are simulated. The analysis of
muscular activation during the transition from rigid to different compliant surfaces
reveals specific anticipatory muscle activation that precedes stepping on a compliant
surface. There is also an indication of varying responses for different surface stiffness
levels. This response is observed across subjects. Results obtained are novel and
useful in establishing a framework for implementing control algorithm parameters to
improve powered ankle prosthesis. With this, it is possible for the prosthesis to adapt
to a new surface and therefore resulting in a more robust smart powered lower limb
prosthesis.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019
Agent
- Author (aut): Obeng, Ruby Afriyie
- Thesis advisor (ths): Artemiadis, Panagiotis
- Thesis advisor (ths): Santello, Marco
- Committee member: Lee, Hyunglae
- Publisher (pbl): Arizona State University