Localizing Solar Power in Different Distribution Grid Feeders and Identification of the Meter-Transformer Connectivity

171986-Thumbnail Image.png
Description
The increase in the photovoltaic (PV) generation on distribution grids may cause reverse power flows and challenges such as service voltage violations and transformer overloading. To resolve these issues, utilities need situational awareness, e.g., PV-feeder mapping to identify the potential

The increase in the photovoltaic (PV) generation on distribution grids may cause reverse power flows and challenges such as service voltage violations and transformer overloading. To resolve these issues, utilities need situational awareness, e.g., PV-feeder mapping to identify the potential back-feeding feeders and meter-transformer mapping for transformer overloading. As circuit schematics are outdated, this work relies on data. In cases where the advanced metering infrastructure (AMI) data is unavailable, e.g., analog meters or bandwidth limitation, the dissertation proposes to use feeder measurements from utilities and solar panel measurements from solar companies to identify PV-feeder mapping. Several sequentially improved methods based on quantitative association rule mining (QARM) are proposed, where a lower bound for performance guarantee is also provided. However, binning data in QARM leads to information loss. So, bands are designed to replace bins for increased robustness. For cases where AMI data is available but solar PV data is unavailable, the AMI voltage data and location data are used for situational awareness, i.e., meter-transformer mapping, to resolve voltage violation and transformer overloading. A density-based clustering method is proposed that leverages AMI voltage data and geographical information to efficiently segment utility meters such that the segments comprise meters of few transformers only. Although it is helpful for utilities, it may not directly recover the meter-transformer connectivity, which requires transformer-wise segmentation. The proposed density-based method and other past methods ignore two common scenarios, e.g., having large distance between a meter and parent transformer or high similarity of a meter's consumption pattern to a non-parent transformer's meters. However, going from meter-meter can lead to the parent transformer group meters due to the usual observation that the similarity of intra-cluster meter voltages is usually stronger than the similarity of inter-cluster meter voltages. Therefore, performance guarantee is provided via spectral embedding with voltage data under reasonable assumption. Moreover, the assumption is partially relaxed using location data. It will benefit the utility in many ways, e.g., mitigating voltage violations by transformer tap settings and identifying overloaded transformers.
Date Created
2022
Agent

Enhanced Energy Management System Including Detection Mechanisms and Post-Attack Corrective Actions against Load-Redistribution Attacks

171817-Thumbnail Image.png
Description
The fast growth of the power system industry and the increase in the usage of computerized management systems introduces more complexities to power systems operations. Although these computerized management systems help system operators manage power systems reliably and efficiently, they

The fast growth of the power system industry and the increase in the usage of computerized management systems introduces more complexities to power systems operations. Although these computerized management systems help system operators manage power systems reliably and efficiently, they introduce the threat of cyber-attacks. In this regard, this dissertation focuses on the load-redistribution (LR) attacks, which cause overflows in power systems. Previous researchers have shown the possibility of launching undetectable LR attacks against power systems, even when protection schemes exist. This fact pushes researchers to develop detection mechanisms. In this thesis, real-time detection mechanisms are developed based on the fundamental knowledge of power systems, operation research, and machine learning. First, power systems domain insight is used to identify an underlying exploitable structure for the core problem of LR attacks. Secondly, a greedy algorithm’s ability to solve the identified structure to optimality is proved, which helps operators quickly find the best attack vector and the most sensitive buses for each target transmission asset. Then, two quantitative security indices are proposed and leveraged to develop a measurement threat analysis (MTA) tool. Finally, a machine learning-based classifier is used to enhance the MTA tool’s functionality in flagging tiny LR attacks and distinguishing them from measurement/forecasting errors. On the other hand, after acknowledging that an adversarial LR attack interferes with the system, establishing a corrective action is imperative to mitigate or remove the potential consequences of the attack. This dissertation proposes two corrective actions; the first one is developed based on the worst-case attack scenario, considering the information provided by the MTA tool. After The MTA tool flags an LR attack in the system, it should determine the primary target and other affected transmission assets, using which the operator can estimate the actual loads in the post-attack stage. This estimation is essential since the corresponding security constraints in the first corrective action model are modeled based on these loads. The second one is a robust optimization that considers various load scenarios. The functionality of this robust model does not depend on the information provided by the MTA tool and is more reliable.
Date Created
2022
Agent

Analytical and Data-driven Strategies to Advance Operational Flexibility of Smart Grids with Bulk System Renewables and Distributed Energy Resources

171779-Thumbnail Image.png
Description
Due to the new and old challenges, modern-day market management systems continue ‎to evolve, including market reformulations, introducing new market products, and ‎proposing new frameworks for integrating distributed energy resources (DERs) into the ‎wholesale markets. Overall, questions is regarding how

Due to the new and old challenges, modern-day market management systems continue ‎to evolve, including market reformulations, introducing new market products, and ‎proposing new frameworks for integrating distributed energy resources (DERs) into the ‎wholesale markets. Overall, questions is regarding how to reflect these essential changes in ‎the market models (design, reformulation, and coordination frameworks), design market-‎based incentive structures to adequately compensate participants for providing ancillary ‎services, and assess these impacts on market settlements.‎First, this dissertation proposes the concept of securitized-LMP to solve the issue of how ‎market participants should be compensated for providing N-1 reliability services. Then, ‎pricing implications and settlements of three state-of-art market models are compared. The ‎results show that with a more accurate representation of contingencies in the market ‎models, N-1 grid security requirements are originally captured; thereby, the value of service ‎provided by generators is reflected in the prices to achieve grid security.‎ Also, new flexible ramping product (FRP) designs are proposed for different market ‎processes to (i) schedule day-ahead (DA) FRP awards that are more adaptive concerning ‎the real-time (RT) 15-min net load changes, and (ii) address the FRP deployability issue in ‎fifteen-minute market (FMM). The proposed market models performance with enhanced ‎FRP designs is compared against the DA market and FMM models with the existing FRP ‎design through a validation methodology based on California independent system operator ‎‎(ISO) RT operation. The proposed FRP designs lead to less expected final RT operating ‎cost, higher reliability, and fewer RT price spikes.‎ Finally, this dissertation proposes a distribution utility and ISO coordination framework ‎to enable ISO to manage the wholesale market while preemptively not allowing ‎aggregators to cause distribution ‎system (DS) violations. To this end, this coordination ‎framework architecture utilizes the statistical information obtained using different DS ‎conditions and data-mining algorithms to predict the aggregators qualified maximum ‎capacity. A validation phase considering Volt-VAr support provided by distributed PV smart ‎inverters is utilized for evaluate the proposed model performance. The proposed model ‎produces wholesale market awards for aggregators that fall within the DS operational limits ‎and, consequently, will not impose reliable and safety issues for the DS.‎
Date Created
2022
Agent

Impact of High PV Penetration in a Real Large Feeder Network using Edge based Advanced Control and Novel Soft-switching DC-DC Topologies

171708-Thumbnail Image.png
Description
Large number of renewable energy based distributed energy resources(DERs) are integrated into the conventional power grid using power electronic interfaces. This causes increased need for efficient power conversion, advanced control, and DER situational awareness. In case of photovoltaic(PV) grid integration,

Large number of renewable energy based distributed energy resources(DERs) are integrated into the conventional power grid using power electronic interfaces. This causes increased need for efficient power conversion, advanced control, and DER situational awareness. In case of photovoltaic(PV) grid integration, power is processed in two stages, namely DC-DC and DC-AC. In this work, two novel soft-switching schemes for quadratic boost DC-DC converters are proposed for PV microinverter application. Both the schemes allow the converter to operate at higher switching frequency, reducing the converter size while still maintaining high power conversion efficiency. Further, to analyze the impact of high penetration DERs on the power system a real-time simulation platform has been developed in this work. A real, large distribution feeder with more than 8000 buses is considered for investigation. The practical challenges in the implementation of a real-time simulation (such as number of buses, simulation time step, and computational burden) and the corresponding solutions are discussed. The feeder under study has a large number of DERs leading to more than 200% instantaneous PV penetration. Opal-RT ePHASORSIM model of the distribution feeder and different types of DER models are discussed in detailed in this work. A novel DER-Edge-Cloud based three-level architecture is proposed for achieving solar situational awareness for the system operators and for real-time control of DERs. This is accomplished using a network of customized edge-intelligent-devices(EIDs) and end-to-end solar energy optimization platform(eSEOP). The proposed architecture attains superior data resolution, data transfer rate and low latency for the end-to-end communication. An advanced PV string inverter with control and communication capabilities exceeding those of state-of-the-art, commercial inverters has been developed to demonstrate the proposed real-time control. A power-hardware-in-loop(PHIL) and EID-in-loop(EIL) testbeds are developed to verify the impact of large number of controllable DERs on the distribution system under different operational modes such as volt-VAr, constant reactive power and constant power factor. Edge level data analytics and intelligent controls such as autonomous reactive power allocation strategy are implemented using EIL testbed for real-time monitoring and control. Finally, virtual oscillator control(VOC) for grid forming inverters and its operation under different X/R conditions are explored.
Date Created
2022
Agent

Application of Deep Reinforcement Learning to Wide Area Power System and Big Data Analysis to Smart Meter Status Monitoring

161912-Thumbnail Image.png
Description
Due to the large scale of power systems, latency uncertainty in communication can cause severe problems in wide-area measurement systems. To resolve the issue, a significant amount of past work focuses on using emerging technologywhich is machine learning methods such

Due to the large scale of power systems, latency uncertainty in communication can cause severe problems in wide-area measurement systems. To resolve the issue, a significant amount of past work focuses on using emerging technologywhich is machine learning methods such as Q-learning to address latency issues in modern controls. Although such a method can deal with the stochastic characteristics of communication latency in the long run, the Q-learning methods tend to overestimate Q-values, leading to high bias. To solve the overestimation bias issue, the learning structure is redesigned with a twin-delayed deep deterministic policy gradient algorithm to handle the damping control issue under unknown latency in the power network. Meanwhile, a new reward function is proposed, taking into account the machine speed deviation, the episode termination prevention, and the feedback from action space. In this way, the system optimally damps down frequency oscillations while maintaining the system’s stability and reliable operation within defined limits. The simulation results verify the proposed algorithm in various perspectives including the latency sensitivity analysis under high renewable energy penetration and the comparison with other machine learning algorithms. For example, if the proposed twin-delayed deep deterministic policy gradient algorithm is applied, the low-frequency oscillation significantly improved compared to existing algorithms. Furthermore, under the mentorship of Dr. Yang Weng, the development of a big data analysis software project has been collaborating with the Salt River Project (SRP), a major power utility in Arizona. After a thorough examination of data for the project, it is examined that SRP is suffering from a lot of smart meters data issues. An important goal of the project is to design big data software to monitor SRP smart meter data and to present indicators of abnormalities and special events. Currently, the big data software interface has been developed for SRP, which has already been successfully adopted by other utilities, research institutes, and laboratories as well.
Date Created
2021
Agent

Voltage-Collapse Point Estimation, Holomorphic Embedding Applied to the DCOPF Problem and the Padé Matrix Pencil Method

161839-Thumbnail Image.png
Description
The power-flow problem has been solved using the Newton-Raphson and Gauss-Seidel methods. Recently the holomorphic embedding method (HEM), a recursive (non-iterative) method applied to solving nonlinear algebraic systems, was applied to the power-flow problem. HEM has been claimed to have

The power-flow problem has been solved using the Newton-Raphson and Gauss-Seidel methods. Recently the holomorphic embedding method (HEM), a recursive (non-iterative) method applied to solving nonlinear algebraic systems, was applied to the power-flow problem. HEM has been claimed to have superior properties when compared to the Newton-Raphson and other iterative methods in the sense that if the power-flow solution exists, it is guaranteed that a properly configured HEM can find the high voltage solution and, if no solution exists, HEM will signal that unequivocally. Provided a solution exists, convergence of HEM in the extremal domain is claimed to be theoretically guaranteed by Stahl’s convergence-in-capacity theorem, another advantage over other iterative nonlinear solver.In this work it is shown that the poles and zeros of the rational function from fitting the local PMU measurements can be used theoretically to predict the voltage-collapse point. Different numerical methods were applied to improve prediction accuracy when measurement noise is present. It is also shown in this work that the dc optimal power flow (DCOPF) problem can be formulated as a properly embedded set of algebraic equations. Consequently, HEM may also be used to advantage on the DCOPF problem. For the systems examined, the HEM-based interior-point approach can be used to solve the DCOPF problem. While the ultimate goal of this line of research is to solve the ac OPF; tackled in this work, is a precursor and well-known problem with Padé approximants: spurious poles that are generated when calculating the Padé approximant may, at times, prevent convergence within the functions domain. A new method for calculating the Padé approximant, called the Padé Matrix Pencil Method was developed to solve the spurious pole problem. The Padé Matrix Pencil Method can achieve accuracy equal to that of the so-called direct method for calculating Padé approximants of the voltage-functions tested while both using a reduced order approximant and eliminating any spurious poles within the portion of the function’s domain of interest: the real axis of the complex plane up to the saddle-node bifurcation point.
Date Created
2021
Agent

Power System Security Enhancement for Real-Time Operations During Multiple Outages using Network Science

161588-Thumbnail Image.png
Description
Ensuring reliable operation of large power systems subjected to multiple outages is a challenging task because of the combinatorial nature of the problem. Traditional methods of steady-state security assessment in power systems involve contingency analysis based on AC or DC

Ensuring reliable operation of large power systems subjected to multiple outages is a challenging task because of the combinatorial nature of the problem. Traditional methods of steady-state security assessment in power systems involve contingency analysis based on AC or DC power flows. However, power flow based contingency analysis is not fast enough to evaluate all contingencies for real-time operations. Therefore, real-time contingency analysis (RTCA) only evaluates a subset of the contingencies (called the contingency list), and hence might miss critical contingencies that lead to cascading failures.This dissertation proposes a new graph-theoretic approach, called the feasibility test (FT) algorithm, for analyzing whether a contingency will create a saturated or over-loaded cut-set in a meshed power network; a cut-set denotes a set of lines which if tripped separates the network into two disjoint islands. A novel feature of the proposed approach is that it lowers the solution time significantly making the approach viable for an exhaustive real-time evaluation of the system. Detecting saturated cut-sets in the power system is important because they represent the vulnerable bottlenecks in the network. The robustness of the FT algorithm is demonstrated on a 17,000+ bus model of the Western Interconnection (WI). Following the detection of post-contingency cut-set saturation, a two-component methodology is proposed to enhance the reliability of large power systems during a series of outages. The first component combines the proposed FT algorithm with RTCA to create an integrated corrective action (iCA), whose goal is to secure the power system against post-contingency cut-set saturation as well as critical branch overloads. The second component only employs the results of the FT to create a relaxed corrective action (rCA) that quickly secures the system against saturated cut-sets. The first component is more comprehensive than the second, but the latter is computationally more efficient. The effectiveness of the two components is evaluated based upon the number of cascade triggering contingencies alleviated, and the computation time. Analysis of different case-studies on the IEEE 118-bus and 2000-bus synthetic Texas systems indicate that the proposed two-component methodology enhances the scope and speed of power system security assessment during multiple outages.
Date Created
2021
Agent

Coordinated Wide-Area Control of Multiple Controllers in a Modern Power System

161584-Thumbnail Image.png
Description
Low frequency oscillations (LFOs) are recognized as one of the most challenging problems in electric grids as they limit power transfer capability and can result in system instability. In recent years, the deployment of phasor measurement units (PMUs) has increased

Low frequency oscillations (LFOs) are recognized as one of the most challenging problems in electric grids as they limit power transfer capability and can result in system instability. In recent years, the deployment of phasor measurement units (PMUs) has increased the accessibility to time-synchronized wide-area measurements, which has, in turn, enabledthe effective detection and control of the oscillatory modes of the power system. This work assesses the stability improvements that can be achieved through the coordinated wide-area control of power system stabilizers (PSSs), static VAr compensators (SVCs), and supplementary damping controllers (SDCs) of high voltage DC (HVDC) lines, for damping electromechanical oscillations in a modern power system. The improved damping is achieved by designing different types of coordinated wide-area damping controllers (CWADC) that employ partial state-feedback. The first design methodology uses a linear matrix inequality (LMI)-based mixed H2/Hinfty control that is robust for multiple operating scenarios. To counteract the negative impact of communication failure or missing PMU measurements on the designed control, a scheme to identify the alternate set of feedback signals is proposed. Additionally, the impact of delays on the performance of the control design is investigated. The second approach is motivated by the increasing popularity of artificial intelligence (AI) in enhancing the performance of interconnected power systems. Two different wide-area coordinated control schemes are developed using deep neural networks (DNNs) and deep reinforcement learning (DRL), while accounting for the uncertainties present in the power system. The DNN-CWADC learns to make control decisions using supervised learning; the training dataset consisting of polytopic controllers designed with the help of LMI-based mixed H2/Hinfty optimization. The DRL-CWADC learns to adapt to the system uncertainties based on its continuous interaction with the power system environment by employing an advanced version of the state-of-the-art deep deterministic policy gradient (DDPG) algorithm referred to as bounded exploratory control-based DDPG (BEC-DDPG). The studies performed on a 29 machine, 127 bus equivalent model of theWestern Electricity Coordinating Council (WECC) system-embedded with different types of damping controls have demonstrated the effectiveness and robustness of the proposed CWADCs.
Date Created
2021
Agent

Modeling, Control and Design of Modular Multilevel Converters for High Power Applications

158803-Thumbnail Image.png
Description
Modular multilevel converters (MMCs) have become an attractive technology for high power applications. One of the main challenges associated with control and operation of the MMC-based systems is to smoothly precharge submodule (SM) capacitors to the nominal voltage during the

Modular multilevel converters (MMCs) have become an attractive technology for high power applications. One of the main challenges associated with control and operation of the MMC-based systems is to smoothly precharge submodule (SM) capacitors to the nominal voltage during the startup process. The existing closed-loop methods require additional effort to analyze the small-signal model of MMC and tune control parameters. The existing open-loop methods require auxiliary voltage sources to charge SM capacitors, which add to the system complexity and cost. A generalized precharging strategy is proposed in this thesis.

For large-scale MMC-embedded power systems, it is required to investigate dynamic performance, fault characteristics, and stability. Modeling of the MMC is one of the challenges associated with the study of large-scale MMC-based power systems. The existing models of MMC did not consider the various configurations of SMs and different operating conditions. An improved equivalent circuit model is proposed in this thesis.

The solid state transformer (SST) has been investigated for the distribution systems to reduce the volume and weight of power transformer. Recently, the MMC is employed into the SST due to its salient features. For design and control of the MMC-based SST, its operational principles are comprehensively analyzed. Based on the analysis, its mathematical model is developed for evaluating steady-state performances. For optimal design of the MMC-based SST, the mathematical model is modified by considering circuit parameters.

One of the challenges of the MMC-based SST is the balancing of capacitor voltages. The performances of various voltage balancing algorithms and different modulation methods have not been comprehensively evaluated. In this thesis, the performances of different voltage-balancing algorithms and modulation methods are analyzed and evaluated. Based on the analysis, two improved voltage-balancing algorithms are proposed in this thesis.

For design of the MMC-based SST, existing references only focus on optimal design of medium-frequency transformer (MFT). In this thesis, an optimal design procedure is developed for the MMC under medium-frequency operation based on the mathematical model of the MMC-based SST. The design performance of MMC is comprehensively evaluated based on free system parameters.
Date Created
2020
Agent

Coordinated Operation of the Electric Power System with Water Distribution Systems: Modeling, Control, Simulation, and Quantification of Resilience

158388-Thumbnail Image.png
Description
The electric power system (EPS) is an extremely complex system that has operational interdependencies with the water delivery and treatment system (WDTS). The term water-energy nexus is commonly used to describe the critical interdependencies that naturally exist between the EPS

The electric power system (EPS) is an extremely complex system that has operational interdependencies with the water delivery and treatment system (WDTS). The term water-energy nexus is commonly used to describe the critical interdependencies that naturally exist between the EPS and water distribution systems (WDS). Presented in this work is a framework for simulating interactions between these two critical infrastructure systems in short-term and long-term time-scales. This includes appropriate mathematical models for system modeling and for optimizing control of power system operation with consideration of conditions in the WDS. Also presented is a complete methodology for quantifying the resilience of the two interdependent systems.

The key interdependencies between the two systems are the requirements of water for the cooling cycle of traditional thermal power plants as well as electricity for pumping and/or treatment in the WDS. While previous work has considered the dependency of thermoelectric generation on cooling water requirements at a high-level, this work considers the impact from limitations of cooling water into network simulations in both a short-term operational framework as well as in the long-term planning domain.

The work completed to set-up simulations in operational length time-scales was the development of a simulator that adequately models both systems. This simulation engine also facilitates the implementation of control schemes in both systems that take advantage of the knowledge of operating conditions in the other system. Initial steps for including the influence of anticipated water availability and water rights attainability within the combined generation and transmission expansion planning problem is also presented. Lastly, the framework for determining the infrastructural-operational resilience (IOR) of the interdependent systems is formulated.

Adequately modeling and studying the two systems and their interactions is becoming critically important. This importance is illustrated by the possibility of unforeseen natural or man-made events or by the likelihood of load increase in the systems, either of which has the risk of putting extreme stress on the systems beyond that experienced in normal operating conditions. Therefore, this work addresses these concerns with novel modeling and control/policy strategies designed to mitigate the severity of extreme conditions in either system.
Date Created
2020
Agent