Advanced Modeling and Optimization Techniques for Smart Grids: From Prosumer Behavior to Three-Phase Distribution Systems Analyses

193514-Thumbnail Image.png
Description
In recent years, the adoption of Distributed Energy Resources (DERs) in power systems has been increasing, driven by technological advancements, development of monitoring and control techniques, policy guidance among various countries, and the benefits DERs bring to the power system.

In recent years, the adoption of Distributed Energy Resources (DERs) in power systems has been increasing, driven by technological advancements, development of monitoring and control techniques, policy guidance among various countries, and the benefits DERs bring to the power system. These benefits include low-cost energy production, environmental sustainability promotion, and enhanced operational efficiency of the power system. For instance, demand response (DR) can alleviate pressure during peak load periods, while solar PV units and wind turbines with smart inverters can improve grid reliability through grid regulation based on IEEE Standard 1547. Despite the opportunities DERs present, their adoption also poses challenges. The growing reliance on renewable sources introduces uncertainty, variability, and intermittency, directly impacting system stability and efficiency. Addressing these challenges necessitates comprehensive research to enhance stability, improve system operations, and maximize resource utilization. This dissertation concentrates on two primary research areas: analyzing prosumer (consumers and producers, as one) consumption behavior and developing AC optimal power flow (ACOPF) models. Firstly, understanding prosumer consumption behavior is important for reducing DERs' uncertainty, particularly DR programs. This study employs a proposed probabilistic algorithm to analyze the causal relationships between prosumer consumption behavior and other factors. Two causal-oriented approaches are utilized to establish accurate prediction models and assess demand flexibility. Causal artificial intelligence facilitates intervention and counterfactual analyses of prosumers’ DR participation and consumption behavior. Finally, a Conditional Hidden Semi-Markov Model (CHSMM) is applied to model and predict household appliance electricity consumption, further enhancing understanding of prosumer behavior. Secondly, the dissertation investigates optimization models for efficient, cost-effective power system operation and resource utilization maximization. A convex two-stage socially-aware and risk-aware Second-Order Cone Programming (SOCP)-based ACOPF model is introduced to mitigate DER uncertainty, enhance PV energy utilization, and reduce operational costs. Additionally, a convex SOCP-based ACOPF model is presented for three-phase unbalanced distribution systems, incorporating the Q-V characteristics of PV units with smart inverters based on IEEE Standard 1547. This model enables the participation of PV units with smart inverters in grid voltage regulation, enhancing power system stability and achieving efficient, cost-effective operation.
Date Created
2024
Agent

Intrinsic and Extrinsic Knowledge Transfer for Robust Data-Driven Event Identification

190971-Thumbnail Image.png
Description
The integration of Distributed Energy Resources (DER), including wind energy and photovoltaic (PV) panels, into power systems, increases the potential for events that could lead to outages and cascading failures. This risk is heightened by the limited dynamic information in

The integration of Distributed Energy Resources (DER), including wind energy and photovoltaic (PV) panels, into power systems, increases the potential for events that could lead to outages and cascading failures. This risk is heightened by the limited dynamic information in energy grid datasets, primarily due to sparse Phasor Measurement Units (PMUs) placement. This data quality issue underscores the need for effective methodologies to manage these challenges. One significant challenge is the data gaps in low-resolution (LR) data from RTU and smart meters, hindering robust machine learning (ML) applications. To address this, a systematic approach involves preparing data effectively and designing efficient event detection methods, utilizing both intrinsic physics and extrinsic correlations from power systems. The process begins by interpolating LR data using high-resolution (HR) data, aiming to create virtual PMUs for improved grid management. Current interpolation methods often overlook extrinsic spatial-temporal correlations and intrinsic governing equations like Ordinary Differential Equations (ODEs) or Differential Algebraic Equations (DAEs). Physics-Informed Neural Networks (PINNs) are used for this purpose, though they face challenges with limited LR samples. The solution involves exploring the embedding space governed by ODEs/DAEs, generating extrinsic correlations for initial LR data imputation, and enforcing intrinsic physical constraints for refinement. After data preparation, event data dimensions such as spatial, temporal, and measurement categories are recovered in a tensor. To prevent overfitting, common in traditional ML methods, tensor decomposition is used. This technique merges intrinsic and physical information across dimensions, yielding informative and compact feature vectors for efficient feature extraction and learning in event detection. Lastly, in grids with insufficient data, knowledge transfer from grids with similar event patterns is a viable solution. This involves optimizing projected and transferred vectors from tensor decomposition to maximize common knowledge utilization across grids. This strategy identifies common features, enhancing the robustness and efficiency of ML event detection models, even in scenarios with limited event data.
Date Created
2023
Agent

Distribution System Operator (DSO) Design for Distributed Energy Resources Market Participation

190932-Thumbnail Image.png
Description
In this dissertation, a distribution system operator (DSO) framework is proposed to optimally coordinate distributed energy resources (DER) aggregators' comprehensive participation in the retail energy market as well as wholesale energy and regulation markets. Various types of DER aggregators, including

In this dissertation, a distribution system operator (DSO) framework is proposed to optimally coordinate distributed energy resources (DER) aggregators' comprehensive participation in the retail energy market as well as wholesale energy and regulation markets. Various types of DER aggregators, including energy storage aggregators (ESAGs), dispatchable distributed generation aggregators (DDGAGs), electric vehicles charging stations (EVCSs), and demand response aggregators (DRAGs), are modeled in the proposed DSO framework. An important characteristic of a DSO is being capable of handling uncertainties in the system operation. An appropriate method for a market operator to cover uncertainties is using two-stage stochastic programming. To handle comprehensive retail and wholesale markets participation of distributed energy resource (DER) aggregators under uncertainty, a two-stage stochastic programming model for the DSO is proposed. To handle unbalanced distribution grids with single-phase aggregators, A DSO framework is proposed for unbalanced distribution networks based on a linearized unbalanced power flow which coordinates with wholesale market clearing process and ensures the DSO's non-profit characteristic. When proposing a DSO, coordination with the ISO is important. A framework is proposed to coordinate the operation of the independent system operator (ISO) and distribution system operator (DSO). The framework is compatible with current practice of the U.S. wholesale market to enable massive distributed energy resources (DERs) to participate in the wholesale market. The DSO builds a bid-in cost function to be submitted to the ISO market through parametric programming. A pricing problem for the DSO is proposed. In pricing problem, after ISO clears the wholesale market, the locational marginal price (LMP) of the ISO-DSO coupling substation is determined, the DSO utilizes this price to solve the DSO pricing problem. The DSO pricing problem determines the distribution LMP (D-LMP) in the distribution system and calculates the payment to each aggregator. An efficient algorithm is proposed to solve the ISO-DSO coordination parametric programming problem. Notably, our proposed algorithm significantly improves the computational efficiency of solving the parametric programming DSO problem which is computationally intensive. Various case studies are performed to analyze the market outcome of the proposed DSO framework and coordination with the ISO.
Date Created
2023
Agent

Selected Applications of Reinforcement Learning in Electricity Markets: Strategic Bidding and Bidding Objective Identification

190827-Thumbnail Image.png
Description
Renewable energy and carbon reduction policies are creating new challenges for electricity markets. To achieve carbon-free goals, large-scale battery energy storage systems (BESSs) are necessary to ensure grid reliability and flexibility. The impact of BESSs on market and grid operation,

Renewable energy and carbon reduction policies are creating new challenges for electricity markets. To achieve carbon-free goals, large-scale battery energy storage systems (BESSs) are necessary to ensure grid reliability and flexibility. The impact of BESSs on market and grid operation, as well as the optimal portfolio across the energy and ancillary services markets, must be analyzed to guide their operation. At the same time, the expansion of renewable and storage resources and the adoption of carbon reduction policies have introduced new complexities to the bidding behavior of market participants, which cannot be easily described by cost-based bidding objectives. In response to these challenges, this dissertation aims to achieve two research objectives: (I) enable BESS participation in energy and ancillary services markets under uncertainties, considering the battery's degradation cost; (II) identify robust bidding objectives for electricity market participants based on their historical bidding data. Three optimization frameworks are proposed in Part I to model a BESS as a price-maker in energy markets, evaluating its impact on market outcomes. The preliminary framework models automatic generation control signals, while the detailed framework proposes a participation factor for dispatching AGC signals and accounts for battery degradation costs. The stochastic framework models spinning reserve deployment with uncertainty and propose an optimization-based approximation method based on reinforcement learning. Case studies on proposed frameworks validate operational models for Battery Energy Storage Systems (BESS) and markets, showing the accuracy and efficiency of the approximation approach. Key findings include that accurate degradation cost modeling is essential, and participation in ancillary services markets is more profitable. Part II proposes a data-driven approach using Adversarial Inverse Reinforcement Learning to identify robust bidding objectives for electricity market participants. It introduces a tailored reinforcement learning model for bidding objective identification without data discretization, and a special policy structure compliant with multi-segment bidding rules. Two approaches are suggested for electricity market environment modeling in RL/IRL problems, ensuring the robustness of the identified bidding objective. Three case studies validated the accuracy and robustness of the proposed bidding objective identification method in various application scenarios.
Date Created
2023
Agent

Optimal Utilization of Third-Party Demand Response Resources in Vertically Integrated Utilities: A Game Theoretic Approach

187558-Thumbnail Image.png
Description
This report studies the optimal mechanisms for the vertically integrated utility to dispatch and incentivize the third-party demand response (DR) providers in its territory. A framework is proposed, with three-layer coupled Stackelberg and simultaneous games, to study the interactions and

This report studies the optimal mechanisms for the vertically integrated utility to dispatch and incentivize the third-party demand response (DR) providers in its territory. A framework is proposed, with three-layer coupled Stackelberg and simultaneous games, to study the interactions and competitions among the pro t-seeking process of the utility, the third-party DR providers, and the individual end users (EUs) in the DR programs. Two coupled single-leader-multiple-followers Stackelberg games with a three-layer structure are proposed to capture the interactions among the utility (modeled in the upper layer), the third-party DR providers (modeled in the middle layer), and the EUs in each DR program (modeled in the lower layer). The competitions among the EUs in each DR program is captured through a non-cooperative simultaneous game. An inconvenience cost function is proposed to model the DR provision willingness and capacity of different EUs. The Stackelberg game between the middle-layer DR provider and the lower-layer EUs is solved by converting the original bi-level programming to a single level programming. This converted single level programming is embedded in an iterative algorithm toward solving the entire coupled games framework. Case studies are performed on IEEE 34-bus and IEEE69-bus test systems to illustrate the application of the proposed framework.
Date Created
2023
Agent

Optimal Placement and Validation of PV Inverter with Voltage Control Capability in Active Distribution Systems

187366-Thumbnail Image.png
Description
The high R/X ratio of typical distribution systems makes the system voltage vulnerable to active power injection from the distributed energy resources (DERs). Moreover, the intermittent and uncertain nature of the DER generation brings new challenges to voltage management. As

The high R/X ratio of typical distribution systems makes the system voltage vulnerable to active power injection from the distributed energy resources (DERs). Moreover, the intermittent and uncertain nature of the DER generation brings new challenges to voltage management. As guided by the previous IEEE standard 1547-2003, most of the existing photovoltaic (PV) systems in the real distribution networks are equipped with conventional inverters, which only allow the PV systems to operate at unity power factor to generate active power. To utilize the voltage control capability of the existing PV systems following the guideline of the revised IEEE standard 1547-2018, this dissertation proposes a two-stage stochastic optimization strategy aimed at optimally placing the PV smart inverters with Volt-VAr capability among the existing PV systems for distribution systems with high PV penetration to mitigate voltage violations. PV smart inverters are fast-response devices compared to conventional voltage control devices in the distribution system. Historically, distribution system planning and operation studies are mainly based on quasi-static simulation, which ignores system dynamic transitions between static solutions. However, as high-penetration PV systems are present in the distribution system, the fast transients of the PV smart inverters cannot be ignored. A detailed dynamic model of the PV smart inverter with Volt-VAr control capability is developed as a dynamic link library (DLL) in OpenDSS to validate the system voltage stability with autonomous control of the optimally placed PV smart inverters. Static and dynamic verification is conducted on an actual 12.47 kV, 9 km-long Arizona utility feeder that serves residential customers. To achieve fast simulation and accommodate more complex PV models with desired accuracy and efficiency, an integrative dynamic simulation framework for OpenDSS with adaptive step size control is proposed. Based on the original fixed-step size simulation framework in OpenDSS, the proposed framework adds a function in the OpenDSS main program to adjust its step size to meet the minimum step size requirement from all the PV inverters in the system. Simulations are conducted using both the original and the proposed framework to validate the proposed simulation framework.
Date Created
2023
Agent

Snyder_Spring_2023_Presentation.pdf

Description

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should be utilized to provide an optimized charging experience for the EV user in a single-unit residential application. In this experiment, an Electric Vehicle simulation tool was created using Python. A training dataset was generated from Alternative Fuels and Data Center (EVI-Pro) using charging data from Phoenix, Arizona. Similarly, the utility price plan chosen for this exercise was SRP Electric Vehicle Price plan. This will be the cost-basis for the thesis. There were four cases that were evaluated by the simulation tool. (1) Utility Guided Scheduling (2) Automatic Scheduling (3) Off-Site Enablement (4) Bidirectional enablement. These use-cases are some of the critical problems facing EV users when it comes to charging at home. Each of these scenarios and algorithms were proven to save the user money in their daily bill. Overall, the user will need some sort of weighted scenario that considers all four cases to provide the best solution to the user. All four scenarios support the use of Adaptive Charging techniques in residential level 2 electric vehicle chargers. By applying these techniques, the user can save up to 90% on their energy bill while offsetting the energy grid during peak hours. The adaptive charging techniques applied in this thesis are critical to the adoption of the next generation electric vehicles. Users need to be enabled to use the latest and greatest technology. In the future, individuals can use this report as a baseline to use an Artificial Intelligence model to make an educated case-by-case decision to deal with the variability of the data.

Date Created
2023-05
Agent

A Next-Generation Solution for Optimizing Residential Electric Vehicle Charging

Description
As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should be utilized to provide an optimized charging experience for the EV user in a single-unit residential application. In this experiment, an Electric Vehicle simulation tool was created using Python. A training dataset was generated from Alternative Fuels and Data Center (EVI-Pro) using charging data from Phoenix, Arizona. Similarly, the utility price plan chosen for this exercise was SRP Electric Vehicle Price plan. This will be the cost-basis for the thesis. There were four cases that were evaluated by the simulation tool. (1) Utility Guided Scheduling (2) Automatic Scheduling (3) Off-Site Enablement (4) Bidirectional enablement. These use-cases are some of the critical problems facing EV users when it comes to charging at home. Each of these scenarios and algorithms were proven to save the user money in their daily bill. Overall, the user will need some sort of weighted scenario that considers all four cases to provide the best solution to the user. All four scenarios support the use of Adaptive Charging techniques in residential level 2 electric vehicle chargers. By applying these techniques, the user can save up to 90% on their energy bill while offsetting the energy grid during peak hours. The adaptive charging techniques applied in this thesis are critical to the adoption of the next generation electric vehicles. Users need to be enabled to use the latest and greatest technology. In the future, individuals can use this report as a baseline to use an Artificial Intelligence model to make an educated case-by-case decision to deal with the variability of the data.
Date Created
2023-05
Agent

Improved Distribution Feeder and Load Modeling in Power Systems using Electro Magnetic Transient Models

171988-Thumbnail Image.png
Description
With the increasing penetration levels of distributed energy resources along distribution feeders, the importance of load modeling has grown significantly and therefore it is important to have an accurate representation of the distribution system in the planning and operation studies.

With the increasing penetration levels of distributed energy resources along distribution feeders, the importance of load modeling has grown significantly and therefore it is important to have an accurate representation of the distribution system in the planning and operation studies. Although, currently, most of the power system studies are being done using positive sequence commercial software packages for computational convenience purposes, it comes at the cost of reduced accuracy when compared to the more accurate electromagnetic transient (EMT) simulators (but more computationally intensive). However, it is expected, that in the next several years, the use of EMT simulators for large-scale system studies would become a necessity to implement the ambitious renewable energy targets adopted by many countries across the world. Currently, the issue of developing more accurate EMT feeder and load models has yet to be addressed. Therefore, in the first phase of this work, an optimization algorithm to synthesize an EMT distribution feeder and load model has been developed by capturing the current transients when three-phase voltage measurements (obtained from a local utility) are played-in as input, from events such as sub-transmission faults, to the synthesized model. Using the developed algorithm, for the proposed feeder model, both the load composition and the load parameters have been estimated. The synthesized load model has a load composition which includes impedance loads, single-phase induction motor (SPHIM) loads and three-phase induction motor loads. In the second phase of this work, an analytical formulation of a 24 V EMT contactor is developed to trip the air conditioner EMT SPHIM load, in the feeder and load model developed in Phase 1 of this work, under low voltage conditions. Additionally, a new methodology is developed, to estimate and incorporate the trip and reconnection settings of the proposed EMT contactor model to trip, reconnect and stall the SPHIMs in a positive sequence simulator (PSLF) for single-line to ground faults. Also, the proposed methodology has been tested on a modified three-segment three-phase feeder model using a local utility’s practical feeder topological and loading information. Finally, the developed methodology is modified to accommodate three-phase faults in the system.
Date Created
2022
Agent