Cancer Invasion in Time and Space

158484-Thumbnail Image.png
Description
Cancer is a disease involving abnormal growth of cells. Its growth dynamics is perplexing. Mathematical modeling is a way to shed light on this progress and its medical treatments. This dissertation is to study cancer invasion in time and space

Cancer is a disease involving abnormal growth of cells. Its growth dynamics is perplexing. Mathematical modeling is a way to shed light on this progress and its medical treatments. This dissertation is to study cancer invasion in time and space using a mathematical approach. Chapter 1 presents a detailed review of literature on cancer modeling.

Chapter 2 focuses sorely on time where the escape of a generic cancer out of immune control is described by stochastic delayed differential equations (SDDEs). Without time delay and noise, this system demonstrates bistability. The effects of response time of the immune system and stochasticity in the tumor proliferation rate are studied by including delay and noise in the model. Stability, persistence and extinction of the tumor are analyzed. The result shows that both time delay and noise can induce the transition from low tumor burden equilibrium to high tumor equilibrium. The aforementioned work has been published (Han et al., 2019b).

In Chapter 3, Glioblastoma multiforme (GBM) is studied using a partial differential equation (PDE) model. GBM is an aggressive brain cancer with a grim prognosis. A mathematical model of GBM growth with explicit motility, birth, and death processes is proposed. A novel method is developed to approximate key characteristics of the wave profile, which can be compared with MRI data. Several test cases of MRI data of GBM patients are used to yield personalized parameterizations of the model. The aforementioned work has been published (Han et al., 2019a).

Chapter 4 presents an innovative way of forecasting spatial cancer invasion. Most mathematical models, including the ones described in previous chapters, are formulated based on strong assumptions, which are hard, if not impossible, to verify due to complexity of biological processes and lack of quality data. Instead, a nonparametric forecasting method using Gaussian processes is proposed. By exploiting the local nature of the spatio-temporal process, sparse (in terms of time) data is sufficient for forecasting. Desirable properties of Gaussian processes facilitate selection of the size of the local neighborhood and computationally efficient propagation of uncertainty. The method is tested on synthetic data and demonstrates promising results.
Date Created
2020
Agent

A: kinetic approach to anomalous diffusion in biological trapping regions

153170-Thumbnail Image.png
Description
Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology.

Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology. In particular many diffusive type processes in the cell have been observed to follow a power law $\left \propto t^\alpha$ scaling of the mean square displacement of a particle. This contrasts with the expected linear behavior of particles undergoing normal diffusion. \emph{Anomalous sub-diffusion} ($\alpha<1$) has been attributed to factors such as cytoplasmic crowding of macromolecules, and trap-like structures in the subcellular environment non-linearly slowing the diffusion of molecules. Compared to normal diffusion, signaling molecules in these constrained spaces can be more concentrated at the source, and more diffuse at longer distances, potentially effecting the signalling dynamics. As diffusion at the cellular scale is a fundamental mechanism of cellular signaling and additionally is an implicit underlying mathematical assumption of many canonical models, a closer look at models of anomalous diffusion is warranted. Approaches in the literature include derivations of fractional differential diffusion equations (FDE) and continuous time random walks (CTRW). However these approaches are typically based on \emph{ad-hoc} assumptions on time- and space- jump distributions. We apply recent developments in asymptotic techniques on collisional kinetic equations to develop a FDE model of sub-diffusion due to trapping regions and investigate the nature of the space/time probability distributions assosiated with trapping regions. This approach both contrasts and compliments the stochastic CTRW approach by positing more physically realistic underlying assumptions on the motion of particles and their interactions with trapping regions, and additionally allowing varying assumptions to be applied individually to the traps and particle kinetics.
Date Created
2014
Agent