Description
Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology.

Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology. In particular many diffusive type processes in the cell have been observed to follow a power law $\left \propto t^\alpha$ scaling of the mean square displacement of a particle. This contrasts with the expected linear behavior of particles undergoing normal diffusion. \emph{Anomalous sub-diffusion} ($\alpha<1$) has been attributed to factors such as cytoplasmic crowding of macromolecules, and trap-like structures in the subcellular environment non-linearly slowing the diffusion of molecules. Compared to normal diffusion, signaling molecules in these constrained spaces can be more concentrated at the source, and more diffuse at longer distances, potentially effecting the signalling dynamics. As diffusion at the cellular scale is a fundamental mechanism of cellular signaling and additionally is an implicit underlying mathematical assumption of many canonical models, a closer look at models of anomalous diffusion is warranted. Approaches in the literature include derivations of fractional differential diffusion equations (FDE) and continuous time random walks (CTRW). However these approaches are typically based on \emph{ad-hoc} assumptions on time- and space- jump distributions. We apply recent developments in asymptotic techniques on collisional kinetic equations to develop a FDE model of sub-diffusion due to trapping regions and investigate the nature of the space/time probability distributions assosiated with trapping regions. This approach both contrasts and compliments the stochastic CTRW approach by positing more physically realistic underlying assumptions on the motion of particles and their interactions with trapping regions, and additionally allowing varying assumptions to be applied individually to the traps and particle kinetics.
Reuse Permissions
  • Downloads
    PDF (12.2 MB)
    Download count: 2

    Details

    Title
    • A: kinetic approach to anomalous diffusion in biological trapping regions
    • Anomalous diffusion in biological trapping regions
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2014
    • bibliography
      Includes bibliographical references (p. 104-108)
    • Field of study: Mathematics

    Citation and reuse

    Statement of Responsibility

    by Thomas Matthew Holeva

    Machine-readable links