The cost and benefit of bulk energy storage in the Arizona power transmission system

152202-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive

This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.
Date Created
2013
Agent

Design of an energy management system using a distribution class locational marginal price as a discrete control signal

152111-Thumbnail Image.png
Description
The subject of this thesis is distribution level load management using a pricing signal in a Smart Grid infrastructure. The Smart Grid implements advanced meters, sensory devices and near real time communication between the elements of the system, including the

The subject of this thesis is distribution level load management using a pricing signal in a Smart Grid infrastructure. The Smart Grid implements advanced meters, sensory devices and near real time communication between the elements of the system, including the distribution operator and the customer. A stated objective of the Smart Grid is to use sensory information to operate the electrical power grid more efficiently and cost effectively. One potential function of the Smart Grid is energy management at the distribution level, namely at the individual customer. The Smart Grid allows control of distribution level devices, including distributed energy storage and distributed generation, in operational real time. One method of load control uses an electric energy price as a control signal. The control is achieved through customer preference as the customer allows loads to respond to a dynamic pricing signal. In this thesis, a pricing signal is used to control loads for energy management at the distribution level. The model for the energy management system is created and analyzed in the z-domain due to the envisioned discrete time implementation. Test cases are used to illustrate stability and performance by analytic calculations using Mathcad and by simulation using Matlab Simulink. The envisioned control strategy is applied to the Future Renewable Electric Energy Distribution Management (FREEDM) system. The FREEDM system implements electronic (semiconductor) controls and therefore makes the proposed energy management feasible. The pricing control strategy is demonstrated to be an effective method of performing energy management in a distribution system. It is also shown that stability and near optimal response can be achieved by controlling the parameters of the system. Addition-ally, the communication bandwidth requirements for a pricing control signal are evaluated.
Date Created
2013
Agent