High resolution spectroscopy, normal mode analysis, and Franck-Condon factors calculation of transition metal-containing molecules

151723-Thumbnail Image.png
Description
The objective of the present investigations is to experimentally determine the fundamental molecular properties of the transient metal containing pieces. The transient molecules have been generated using laser ablation production technique and detected by using laser induced fluorescence technique. Ultra-high

The objective of the present investigations is to experimentally determine the fundamental molecular properties of the transient metal containing pieces. The transient molecules have been generated using laser ablation production technique and detected by using laser induced fluorescence technique. Ultra-high resolution spectra of the diatomic molecules, 87SrF, 135&137BaF, YbF, HfF, and IrSi were recorded at a resolution of approximately 30 Mhz. The fine and hyperfine structure of these molecules were determined for the ground and the excited state. The optical Stark splittings of 180HfF and IrSi were recorded and analyzed to determine the permanent electric dipole moments of the ground and the excited state. An effective Hamiltonian operator, including the rotational, centrifugal distortion, spin-orbit, spin-spin, spin-rotation, Λ-doubling, magnetic hyperfine and quadrupole interactions, and Stark effect, was employed to model and analyze the recorded spectra. The electronic spectra of the triatomic molecules, TiO2 and ZrO2, were recorded using pulsed dye laser, LIF, spectrometer at a resolution of 300MHz. These molecules have C2v symmetry. The harmonic frequencies, lifetime measurements were determined. These spectra of ZrO2 and TiO2 were modeled using a normal coordinate analysis and Franck-Condon factor predictions. High resolution field-free and Stark effect spectra of ZrO2 were recorded and for future investigation.
Date Created
2013
Agent