Reduced order modeling with variable spatial fidelity for the linear and nonlinear dynamics of multi-bay structures

155251-Thumbnail Image.png
Description
This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which

This investigation develops small-size reduced order models (ROMs) that provide an accurate prediction of the response of only part of a structure, referred to as component-centric ROMs. Four strategies to construct such ROMs are presented, the first two of which are based on the Craig-Bampton Method and start with a set of modes for the component of interest (the β component). The response in the rest of the structure (the α component) induced by these modes is then determined and optimally represented by applying a Proper Orthogonal Decomposition strategy using Singular Value Decomposition. These first two methods are effectively basis reductions techniques of the CB basis. An approach based on the “Global - Local” Method generates the “global” modes by “averaging” the mass property over α and β comp., respectively (to extract a “coarse” model of α and β) and the “local” modes orthogonal to the “global” modes to add back necessary “information” for β. The last approach adopts as basis for the entire structure its linear modes which are dominant in the β component response. Then, the contributions of other modes in this part of the structure are approximated in terms of those of the dominant modes with close natural frequencies and similar mode shapes in the β component. In this manner, the non-dominant modal contributions are “lumped” onto the dominant ones, to reduce the number of modes for a prescribed accuracy. The four approaches are critically assessed on the structural finite element model of a 9-bay panel with the modal lumping-based method leading to the smallest sized ROMs. Therefore, it is extended to the nonlinear geometric situation and first recast as a rotation of the modal basis to achieve unobservable modes. In the linear case, these modes completely disappear from the formulation owing to orthogonality. In the nonlinear case, however, the generalized coordinates of these modes are still present in the nonlinear terms of the observable modes. A closure-type algorithm is then proposed to eliminate the unobserved generalized coordinates. This approach, its accuracy and computational savings, was demonstrated on a simple beam model and the 9-bay panel model.
Date Created
2017
Agent

Reduced order modeling for the nonlinear geometric response of a curved beam

150159-Thumbnail Image.png
Description
The focus of this investigation is on the renewed assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of a curved beam. In light of difficulties encountered in an earlier modeling effort, the

The focus of this investigation is on the renewed assessment of nonlinear reduced order models (ROM) for the accurate prediction of the geometrically nonlinear response of a curved beam. In light of difficulties encountered in an earlier modeling effort, the various steps involved in the construction of the reduced order model are carefully reassessed. The selection of the basis functions is first addressed by comparison with the results of proper orthogonal decomposition (POD) analysis. The normal basis functions suggested earlier, i.e. the transverse linear modes of the corresponding flat beam, are shown in fact to be very close to the POD eigenvectors of the normal displacements and thus retained in the present effort. A strong connection is similarly established between the POD eigenvectors of the tangential displacements and the dual modes which are accordingly selected to complement the normal basis functions. The identification of the parameters of the reduced order model is revisited next and it is observed that the standard approach for their identification does not capture well the occurrence of snap-throughs. On this basis, a revised approach is proposed which is assessed first on the static, symmetric response of the beam to a uniform load. A very good to excellent matching between full finite element and ROM predicted responses validates the new identification procedure and motivates its application to the dynamic response of the beam which exhibits both symmetric and antisymmetric motions. While not quite as accurate as in the static case, the reduced order model predictions match well their full Nastran counterparts and support the reduced order model development strategy.
Date Created
2011
Agent