Empirical analysis and modeling of freeway merge ratios and lane flow distribution

153985-Thumbnail Image.png
Description
This dissertation research is concerned with the study of two important traffic phenomena; merging and lane-specific traffic behavior. First, this research investigates merging traffic behavior through empirical analysis and evaluation of freeway merge ratios. Merges are important components of freeways

This dissertation research is concerned with the study of two important traffic phenomena; merging and lane-specific traffic behavior. First, this research investigates merging traffic behavior through empirical analysis and evaluation of freeway merge ratios. Merges are important components of freeways and traffic behavior around them have a significant impact in the evolution and stability of congested traffic. At merges, drivers from conflicting traffic branches take turns to merge into a single stream at a rate referred to as the “merge ratio”. In this research, data from several freeway merges was used to evaluate existing macroscopic merge models and theoretical principles of merging behavior. Findings suggest that current merge ratio estimation methods can be insufficient to represent site-specific merge ratios, due to observed within-site variations and unaccounted effects of downstream merge geometry. To overcome these limitations, merge ratios were formulated based on their site-specific lane flow distribution (LFD), the proportion of flow in each freeway lane, for two types of merge geometries. Results demonstrate that the proposed methods are able to improve merge ratio estimates, reproduce within-site variations of merge ratio, and represent more effectively disproportionate redistribution of merging flow for merges where vehicles compete directly to merge due a downstream lane reduction.

Second, this research investigates lane-specific traffic behavior through empirical analysis and statistical modeling of lane flow distribution. Lane-specific traffic behavior is also an important component in evaluating freeway performance and has a significant impact in the mechanism of queue evolution, particularly around merges, and bottleneck discharge rate. In this research, site-specific linear LFD trends of three-lane congested freeways were investigated and modeled. A large-scale data collection process was implemented to systematically characterize the effects of several traffic and geometric features of freeways in the occurrence of between-site LFD variations. Also, an innovative three-stage modeling framework was used to model LFD behavior using multiple logistic regression to describe between-site LFD variations and Dirichlet regression to model recurrent combinations of linear LFD trends. This novel approach is able to represent both between and within site variations of LFD trends better, while accounting for the unit-sum constraint and distribution assumptions inherent of proportions data. Results revealed that proximity to freeway merges, a site’s level of congestion, and the presence of HOV lanes are significant factors that influence site-specific recurrent LFD behavior.

Findings from this work significantly improve the state-of-the-art knowledge on merging and lane-specific traffic behavior, which can help to improve traffic operations and reduce traffic congestion in freeways.
Date Created
2015
Agent

Analysis of freeway bottlenecks

153001-Thumbnail Image.png
Description
Traffic congestion is a major externality in modern transportation systems with negative economic, environmental and social impacts. Freeway bottlenecks are one of the key elements besides the demand for travel by automobiles that determine the extent of congestion. The primary

Traffic congestion is a major externality in modern transportation systems with negative economic, environmental and social impacts. Freeway bottlenecks are one of the key elements besides the demand for travel by automobiles that determine the extent of congestion. The primary objective of this research is to provide a better understanding of factors for variations in bottleneck discharge rates. Specifically this research seeks to (i) develop a methodology comparable to the rigorous methods to identify bottlenecks and measure capacity drop and its temporal (day to day) variations in a region, (ii) understand the variations in discharge rate of a freeway weaving bottleneck with a HOV lane and (iii) understand the relationship between lane flow distribution and discharge rate on a weaving bottleneck resulted from a lane drop and a busy off-ramp. In this research, a methodology has been developed to de-noise raw data using Discrete Wavelet Transforms (DWT). The de-noised data is then used to precisely identify bottleneck activation and deactivation times, and measure pre-congestion and congestion flows using Continuous Wavelet Transforms (CWT). To this end a methodology which could be used efficiently to identify and analyze freeway bottlenecks in a region in a consistent, reproducible manner was developed. Using this methodology, 23 bottlenecks have been identified in the Phoenix metropolitan region, some of which result in long queues and large delays during rush-hour periods. A study of variations in discharge rate of a freeway weaving bottleneck with a HOV lane showed that the bottleneck discharge rate diminished by 3-25% upon queue formations, however, the discharge rate recovered shortly thereafter upon high-occupancy-vehicle (HOV) lane activation and HOV lane flow distribution (LFD) has a significant effect on the bottleneck discharge rate: the higher the HOV LFD, the lower the bottleneck discharge rate. The effect of lane flow distribution and its relationship with bottleneck discharge rate on a weaving bottleneck formed by a lane drop and a busy off-ramp was studied. The results showed that the bottleneck discharge rate and lane flow distribution are linearly related and higher utilization of the median lane results in higher bottleneck discharge rate.
Date Created
2014
Agent

Demographic evolution modeling system for activity-based travel behavior analysis and demand forecasting

152795-Thumbnail Image.png
Description

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics,

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population with an array of socio-demographic and socio-economic attributes has drawn remarkable attention due to privacy and cost constraints in collecting and disclosing full scale data. Although, there has been enormous progress in producing synthetic population, there has been less progress in the development of population evolution modeling arena to forecast future year population. The objective of this dissertation is to develop a well-structured full-fledged demographic evolution modeling system, capturing migration dynamics and evolution of person level attributes, introducing the concept of new household formations and apprehending the dynamics of household level long-term choices over time. A comprehensive study has been conducted on demography, sociology, anthropology, economics and transportation engineering area to better understand the dynamics of evolutionary activities over time and their impacts in travel behavior. This dissertation describes the methodology and the conceptual framework, and the development of model components. Demographic, socio-economic, and land use data from American Community Survey, National Household Travel Survey, Census PUMS, United States Time Series Economic Dynamic data and United States Center for Disease Control and Prevention have been used in this research. The entire modeling system has been implemented and coded using programming language to develop the population evolution module named `PopEvol' into a computer simulation environment. The module then has been demonstrated for a portion of Maricopa County area in Arizona to predict the milestone year population to check the accuracy of forecasting. The module has also been used to evolve the base year population for next 15 years and the evolutionary trend has been investigated.

Date Created
2014
Agent

Estimations of reductions in household vehicle miles traveled under scenarios of shifts in vehicle type choice

152208-Thumbnail Image.png
Description
Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.
Date Created
2013
Agent

Sensitivity of synthetic population generation procedures in transportation models, implications of alternative constraints

150867-Thumbnail Image.png
Description
The growing use of synthetic population, which is a disaggregate representation of the population of an area similar to the real population currently or in the future, has motivated the analysis of its sensitivity in the population generation procedure. New

The growing use of synthetic population, which is a disaggregate representation of the population of an area similar to the real population currently or in the future, has motivated the analysis of its sensitivity in the population generation procedure. New methods in PopGen have enhanced the generation of synthetic populations whereby both household-level and person-level characteristics of interest can be matched in a computationally efficient manner. In the process of set up, population synthesis procedures need sample records for households and persons to match the marginal totals with a specific set of control variables for both the household and person levels, or only the household level, for a specific geographic resolution. In this study, an approach has been taken to analyze the sensitivity by changing and varying this number of controls, with and without taking person controls. The implementation of alternative constraints has been applied on a sample of three hundred block groups in Maricopa County, Arizona. The two datasets that have been used in this study are Census 2000 and a combination of Census 2000 and ACS 2005-2009 dataset. The variation in results for two different rounding methods: arithmetic and bucket rounding have been examined. Finally, the combined sample prepared from the available Census 2000 and ACS 2005-2009 dataset was used to investigate how the results differ when flexibility for drawing households is greater. Study shows that fewer constraints both in household and person levels match the aggregate total population more accurately but could not match distributions of individual attributes. A greater number of attributes both in household and person levels need to be controlled. Where number of controls is higher, using bucket rounding improves the accuracy of the results in both aggregate and disaggregates level. Using combined sample gives the software more flexibility as well as a rich seed matrix to draw households which generates more accurate synthetic population. Therefore, combined sample is another potential option to improve the accuracy in matching both aggregate and disaggregate level household and person distributions.
Date Created
2012
Agent

Integrated model of the urban continuum with dynamic time-dependent activity-travel microsimulation: framework, prototype, and implementation

150506-Thumbnail Image.png
Description
The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to

The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to be accounted to accurately and comprehensively model the urban system. Location choices affect household activity-travel behavior, household activity-travel behavior affects network level of service (performance), and network level of service, in turn, affects land use and activity-travel behavior. The development of conceptual designs and operational frameworks that represent such complex inter-relationships in a consistent fashion across behavioral units, geographical entities, and temporal scales has proven to be a formidable challenge. In this research, an integrated microsimulation modeling framework called SimTRAVEL (Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land) that integrates the component model systems in a behaviorally consistent fashion, is presented. The model system is designed such that the activity-travel behavior model and the dynamic traffic assignment model are able to communicate with one another along continuous time with a view to simulate emergent activity-travel patterns in response to dynamically changing network conditions. The dissertation describes the operational framework, presents the modeling methodologies, and offers an extensive discussion on the advantages that such a framework may provide for analyzing the impacts of severe network disruptions on activity-travel choices. A prototype of the model system is developed and implemented for a portion of the Greater Phoenix metropolitan area in Arizona to demonstrate the capabilities of the model system.
Date Created
2012
Agent

Experience in data quality assessment on archived historical freeway traffic data

149930-Thumbnail Image.png
Description
Concern regarding the quality of traffic data exists among engineers and planners tasked with obtaining and using the data for various transportation applications. While data quality issues are often understood by analysts doing the hands on work, rarely are the

Concern regarding the quality of traffic data exists among engineers and planners tasked with obtaining and using the data for various transportation applications. While data quality issues are often understood by analysts doing the hands on work, rarely are the quality characteristics of the data effectively communicated beyond the analyst. This research is an exercise in measuring and reporting data quality. The assessment was conducted to support the performance measurement program at the Maricopa Association of Governments in Phoenix, Arizona, and investigates the traffic data from 228 continuous monitoring freeway sensors in the metropolitan region. Results of the assessment provide an example of describing the quality of the traffic data with each of six data quality measures suggested in the literature, which are accuracy, completeness, validity, timeliness, coverage and accessibility. An important contribution is made in the use of data quality visualization tools. These visualization tools are used in evaluating the validity of the traffic data beyond pass/fail criteria commonly used. More significantly, they serve to educate an intuitive sense or understanding of the underlying characteristics of the data considered valid. Recommendations from the experience gained in this assessment include that data quality visualization tools be developed and used in the processing and quality control of traffic data, and that these visualization tools, along with other information on the quality control effort, be stored as metadata with the processed data.
Date Created
2011
Agent

An assessment of stochastic variability and convergence characteristics in travel microsimulation models

149519-Thumbnail Image.png
Description
In the middle of the 20th century in the United States, transportation and infrastructure development became a priority on the national agenda, instigating the development of mathematical models that would predict transportation network performance. Approximately 40 years later, transportation planning

In the middle of the 20th century in the United States, transportation and infrastructure development became a priority on the national agenda, instigating the development of mathematical models that would predict transportation network performance. Approximately 40 years later, transportation planning models again became a national priority, this time instigating the development of highly disaggregate activity-based traffic models called microsimulations. These models predict the travel on a network at the level of the individual decision-maker, but do so with a large computational complexity and processing time requirement. The vast resources and steep learning curve required to integrate microsimulation models into the general transportation plan have deterred planning agencies from incorporating these tools. By researching the stochastic variability in the results of a microsimulation model with varying random number seeds, this paper evaluates the number of simulation trials necessary, and therefore the computational effort, for a planning agency to reach stable model outcomes. The microsimulation tool used to complete this research is the Transportation Analysis and Simulation System (TRANSIMS). The requirements for initiating a TRANSIMS simulation are described in the paper. Two analysis corridors are chosen in the Metropolitan Phoenix Area, and the roadway performance characteristics volume, vehicle-miles of travel, and vehicle-hours of travel are examined in each corridor under both congested and uncongested conditions. Both congested and uncongested simulations are completed in twenty trials, each with a unique random number seed. Performance measures are averaged for each trial, providing a distribution of average performance measures with which to test the stability of the system. The results of this research show that the variability in outcomes increases with increasing congestion. Although twenty trials are sufficient to achieve stable solutions for the uncongested state, convergence in the congested state is not achieved. These results indicate that a highly congested urban environment requires more than twenty simulation runs for each tested scenario before reaching a solution that can be assumed to be stable. The computational effort needed for this type of analysis is something that transportation planning agencies should take into consideration before beginning a traffic microsimulation program.
Date Created
2010
Agent

Modeling the role and influence of children in household activity-based rravel model systems

149462-Thumbnail Image.png
Description
Rapid developments are occurring in the arena of activity-based microsimulation models. Advances in computational power, econometric methodologies and data collection have all contributed to the development of microsimulation tools for planning applications. There has also been interest in modeling child

Rapid developments are occurring in the arena of activity-based microsimulation models. Advances in computational power, econometric methodologies and data collection have all contributed to the development of microsimulation tools for planning applications. There has also been interest in modeling child daily activity-travel patterns and their influence on those of adults in the household using activity-based microsimulation tools. It is conceivable that most of the children are largely dependent on adults for their activity engagement and travel needs and hence would have considerable influence on the activity-travel schedules of adult members in the household. In this context, a detailed comparison of various activity-travel characteristics of adults in households with and without children is made using the National Household Travel Survey (NHTS) data. The analysis is used to quantify and decipher the nature of the impact of activities of children on the daily activity-travel patterns of adults. It is found that adults in households with children make a significantly higher proportion of high occupancy vehicle (HOV) trips and lower proportion of single occupancy vehicle (SOV) trips when compared to those in households without children. They also engage in more serve passenger activities and fewer personal business, shopping and social activities. A framework for modeling activities and travel of dependent children is proposed. The framework consists of six sub-models to simulate the choice of going to school/pre-school on a travel day, the dependency status of the child, the activity type, the destination, the activity duration, and the joint activity engagement with an accompanying adult. Econometric formulations such as binary probit and multinomial logit are used to obtain behaviorally intuitive models that predict children's activity skeletons. The model framework is tested using a 5% sample of a synthetic population of children for Maricopa County, Arizona and the resulting patterns are validated against those found in NHTS data. Microsimulation of these dependencies of children can be used to constrain the adult daily activity schedules. The deployment of this framework prior to the simulation of adult non-mandatory activities is expected to significantly enhance the representation of the interactions between children and adults in activity-based microsimulation models.
Date Created
2010
Agent