Empirical analysis and modeling of freeway merge ratios and lane flow distribution
Second, this research investigates lane-specific traffic behavior through empirical analysis and statistical modeling of lane flow distribution. Lane-specific traffic behavior is also an important component in evaluating freeway performance and has a significant impact in the mechanism of queue evolution, particularly around merges, and bottleneck discharge rate. In this research, site-specific linear LFD trends of three-lane congested freeways were investigated and modeled. A large-scale data collection process was implemented to systematically characterize the effects of several traffic and geometric features of freeways in the occurrence of between-site LFD variations. Also, an innovative three-stage modeling framework was used to model LFD behavior using multiple logistic regression to describe between-site LFD variations and Dirichlet regression to model recurrent combinations of linear LFD trends. This novel approach is able to represent both between and within site variations of LFD trends better, while accounting for the unit-sum constraint and distribution assumptions inherent of proportions data. Results revealed that proximity to freeway merges, a site’s level of congestion, and the presence of HOV lanes are significant factors that influence site-specific recurrent LFD behavior.
Findings from this work significantly improve the state-of-the-art knowledge on merging and lane-specific traffic behavior, which can help to improve traffic operations and reduce traffic congestion in freeways.
- Author (aut): Reina, Paulina
- Thesis advisor (ths): Ahn, Soyoung
- Committee member: Pendyala, Ram
- Committee member: Kaloush, Kamil
- Publisher (pbl): Arizona State University