Anthropogenic activities have had a profound effect on ecosystems, sediment budgets, and dust emissions stemming from widespread changes in land use and land cover and increases in sediment disturbance. Sandy coastal environments are under increasing pressure from the impacts of…
Anthropogenic activities have had a profound effect on ecosystems, sediment budgets, and dust emissions stemming from widespread changes in land use and land cover and increases in sediment disturbance. Sandy coastal environments are under increasing pressure from the impacts of rising sea levels, coastal flooding, and erosion. Coastal foredunes can serve as a buffer to protect coastal communities from the impacts of coastal erosion, flooding, and sea-level rise. They also serve an important role as an ecosystem service, providing opportunities for recreation (off-highway vehicle, hiking, tourism) and habitat for native and endemic biota. Increased disturbance and pressure by human activity within the beach-dune system can lead to a decoupling of form and function from natural geomorphic and biotic processes. Dune management and restoration is often employed to mitigate some of the aforementioned pressures. Dynamic or ‘nature-based’ restoration aims to restore the form and function of a geomorphic system and improve landform resilience to external pressures by employing complimentary native plant species. This type of approach places emphasis on the ecological and geomorphic interactions within a landscape to improve the overall function and resiliency of the system to external pressures. Two case studies along the coast of California, the Lanphere Dunes and Oceano Dunes, provide uniquely different approaches to foredune restoration and the corresponding issues of landscape management for various goals. The case studies provided employ a suite of close-range remote sensing techniques, including kite aerial photography, uncrewed aerial systems photography, and terrestrial laser scanning, to generate high resolution (< 0.1 m) products (surface models; orthophoto mosaics in red-green-blue (RGB) and multispectral) to quantify and inform on restoration efforts by examining sediment budget and vegetation characteristics over a mesoscale (spatial and temporal). Results were compared to a variety of control sites (e.g., no restoration, natively vegetated, invasively vegetated) to highlight the differences between restored and unrestored landscapes, and the efficacy of restoration efforts for improving the developmental trajectory of a landscape towards a "desired" state.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
This study has the objective to better constrain the role played by thermal erosion by turbulent lava in the formation of large channels on Mars and the Moon. On Mars, a rigorous one-dimensional model was used to test whether lava…
This study has the objective to better constrain the role played by thermal erosion by turbulent lava in the formation of large channels on Mars and the Moon. On Mars, a rigorous one-dimensional model was used to test whether lava might have excavated the Athabasca Valles outflow channel. Calculated erosion depths are much lower than the measured depths of the channel, and suggest a limited role played by thermal erosion in excavating it. On the Moon, the investigation focused on the outer and inner sinuous rilles of Vallis Schröteri. At this site, erosional features cannot be explained by one- and two-dimensional models. The first 3-D model of thermal erosion by turbulent lava on the Moon was created to relate the spatial distribution of erosion rates over the bed and banks of a channel with changes in fluid- and thermodynamic parameters. The turbulence model chosen for each steady-state simulation is the Shear Stress Transport (SST) k-ω model and OpenFOAM is the Computational Fluid Dynamics software used. At the 150-km-long, 4-km-wide, and up-to 700-m-deep outer rille, I aimed to determine maximum erosion rates at/near the lava source and rille segments 1-km-long and 4-km-wide were chosen for the simulations. By adopting the obtained maximum erosion rates of 1 m/day, lava might have taken ~2 years to excavate the 700-m-deep depression. These fast erosion rates were unlikely maintained downstream of the lava source unless lava flowed in a tube. Besides, observational evidence suggests that tectonics and constructional processes likely contributed to rille development. On these grounds, thermal or thermo-mechanical erosion might have contributed to rille formation at a later stage. At the Vallis Schröteri inner rille, 1-km-long and 160-m-wide meandering channels were chosen. In one scenario, lava loses heat by radiation, in the other flows in a tube. Using the calculated (and conservative) erosion rate of 50 cm/day, it would have taken ~6 months for the 90-m deep inner rille to be excavated. A mechanism of secondary flow circulation analogous to that found in meandering rivers potentially explains meander generation. At each bend, downstream and cross-stream velocity variations lead to local temperature/ erosion enhancements.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Worldwide, rivers and streams make up dense, interconnected conveyor belts of sediment– removing carved away earth and transporting it downstream. The propensity of alluvial river beds to self-organize into complex trains of bedforms (i.e. ripples and dunes) suggests that the…
Worldwide, rivers and streams make up dense, interconnected conveyor belts of sediment– removing carved away earth and transporting it downstream. The propensity of alluvial river beds to self-organize into complex trains of bedforms (i.e. ripples and dunes) suggests that the associated fluid and sediment dynamics over individual bedforms are an integral component of bedload transport (sediment rolled or bounced along the river bed) over larger scales. Generally speaking, asymmetric bedforms (such as alluvial ripples and dunes) migrate downstream via erosion on the stoss side of the bedform and deposition on the lee side of the bedform. Thus, the migration of bedforms is intrinsically linked to the downstream flux of bedload sediment. Accurate quantification of bedload transport is important for the management of waters, civil engineering, and river restoration efforts. Although important, accurate qualification of bedload transport is a difficult task that continues t elude researchers. This dissertation focuses on improving our understanding and quantification of bedload transport on the two spatial scales: the bedform scale and the reach (~100m) scale.
Despite a breadth of work investigating the spatiotemporal details of fluid dynamics over bedforms and bedload transport dynamics over flat beds, there remains a relative dearth of investigations into the spatiotemporal details of bedload transport over bedforms and on a sub-bedform scale. To address this, we conducted two sets of flume experiments focused on the two fundamental regions of flow associated with bedforms: flow separation/reattachment on the lee side of the bedform (Chapter 1; backward facing-step) and flow reacceleration up the stoss side of the next bedform (Chapter 2; two-dimensional bedform). Using Laser and Acoustic Doppler Velocimetry to record fluid turbulent events and manual particle tracking of high-speed imagery to record bedload transport dynamics, we identified the existence and importance of “permeable splat events” in the region proximal to flow reattachment.
These coupled turbulent and sediment transport events are integral to the spatiotemporal pattern of bedload transport over bedforms. Splat events are localized, high magnitude, intermittent flow features in which fluid impinges on the bed, infiltrates the top portion of bed, and then exfiltrates in all directions surrounding the point of impingement. This initiates bedload transport in a radial pattern. These turbulent structures are primarily associated with quadrant 1 and 4 turbulent structures (i.e. instantaneous fluid fluctuations in the streamwise direction that bring fluid down into the bed in the case of quadrant 1 events, or up away from the bed in the case of quadrant 4 events) and generate a distinct pattern of bedload transport compared to transport dynamics distal to flow reattachment. Distal to flow reattachment, bedload transport is characterized by relatively unidirectional transport. The dynamics of splat events, specifically their potential for inducing significant magnitudes of cross-stream transport, has important implications for the evolution of bedforms from simple, two dimensional features to complex, three-dimensional features.
New advancements in sonar technology have enabled more detailed quantification of bedload transport on the reach scale, a process paramount to the effective management of rivers with sand or gravel-dominated bed material. However, a practical and scalable field methodology for reliably estimating bedload remains elusive. A popular approach involves calculating transport from the geometry and celerity of migrating bedforms, extracted from time-series of bed elevation profiles (BEPs) acquired using echosounders. Using two sets of repeat multibeam sonar surveys from the Diamond Creek USGS gage station in Grand Canyon National Park with large spatio-temporal resolution and coverage, we compute bedload using three field techniques for acquiring BEPs: repeat multi-, single-, and multiple single-beam sonar. Significant differences in flux arise between repeat multibeam and single beam sonar. Mulitbeam and multiple single beam sonar systems can potentially yield comparable results, but the latter relies on knowledge of bedform geometries and flow that collectively inform optimal beam spacing and sampling rate. These results serve to guide design of optimal sampling, and for comparing transport estimates from different sonar configurations.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Gnamma pit is an Australian aboriginal term for weathering pit. A mix of weathering and aeolian processes controls the formation of gnamma pits. There is a potential to utilize gnamma as an indicator of paleowind intensity because gnamma growth is…
Gnamma pit is an Australian aboriginal term for weathering pit. A mix of weathering and aeolian processes controls the formation of gnamma pits. There is a potential to utilize gnamma as an indicator of paleowind intensity because gnamma growth is promoted by the removal of particles from gnamma pits by wind, a process referred to as deflation. Wind tunnel tests determining the wind velocity threshold of deflation over a range of pit dimensions and particles sizes are conducted. Computational fluid dynamics (CFD) modeling utilizing the Re-Normalisation Group (RNG) K-Epsilon turbulence closure is used to investigate the distribution of wall shear stress and turbulent kinetic energy. An empirical equation is proposed to estimate shear stress as a function of the wind velocity and pit depth dimensions. With this equation and Shields Diagram, the wind velocity threshold for evacuating particles in the pit can be estimated by measuring the pit depth ratio and particle size. It is expected that the pit would continue to grow until this threshold is reached. The wind speed deflation threshold is smaller in the wind tunnel than predicted by the CFD and Shields diagram model. This discrepancy may be explained by the large turbulent kinetic energy in the gnamma pit as predicted by the CFD model as compared to the flat bed experiments used to define the Shields diagram. An empirical regression equation of the wind tunnel data is developed to estimate paleowind maximums.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to…
Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have the potential to alter riparian vegetation. This research, consisting of two papers, examines relationships between hydrology and riparian vegetation along the Verde River in central Arizona, from applied and theoretical perspectives. One paper investigates how dominance of tree and shrub species and cover of certain functional groups change along hydrologic gradients. The other paper uses the Verde River flora along with that river's flood and moisture gradients to answer the question of whether functional groups can be defined universally. Drying of the Verde River would lead to a shift from cottonwood-willow streamside forest to more drought adapted desert willow or saltcedar, a decline in streamside marsh species, and decreased species richness. Effects drying will have on one dominant forest tree, velvet ash, is unclear. Increase in the frequency of large floods would potentially increase forest density and decrease average tree age and diameter. Correlations between functional traits of Verde River plants and hydrologic gradients are consistent with "leaf economics," or the axis of resource capture, use, and release, as the primary strategic trade-off for plants. This corresponds to the competitor-stress tolerator gradient in Grime's life history strategy theory. Plant height was also a strong indicator of hydrologic condition, though it is not clear from the literature if plant height is independent enough of leaf characteristics on a global scale to be considered a second axis. Though the ecohydrologic relationships are approached from different perspectives, the results of the two papers are consistent if interpreted together. The species that are currently dominant in the near-channel Verde River floodplain are tall, broad-leaf trees, and the species that are predicted to become more dominant in the case of the river drying are shorter trees or shrubs with smaller leaves. These results have implications for river and water management, as well as theoretical ecology.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
River and riparian areas are important foraging habitat for insectivorous bats. Numerous studies have shown that aquatic insects provide an important trophic resource to terrestrial consumers, including bats, and are key in regulating population size and species interactions in terrestrial…
River and riparian areas are important foraging habitat for insectivorous bats. Numerous studies have shown that aquatic insects provide an important trophic resource to terrestrial consumers, including bats, and are key in regulating population size and species interactions in terrestrial food webs. Yet these studies have generally ignored how structural characteristics of the riverine landscape influence trophic resource availability or how terrestrial consumers respond to ensuing spatial and temporal patterns of trophic resources. Moreover, few studies have examined linkages between a stream's hydrologic regime and the timing and magnitude of aquatic insect availability. The main objective of my dissertation is to understand the causes of bat distributions in space and time. Specifically, I examine how trophic resource availability, structural components of riverine landscapes (channel confinement and riparian vegetation structure), and hydrologic regimes (flow permanence and timing of floods) mediate spatial and temporal patterns in bat activity. First, I show that river channel confinement determines bat activity along a river's longitudinal axis (directly above the river), while trophic resources appear to have stronger effects across a river's lateral (with distance from the river) axis. Second, I show that flow intermittency affects bat foraging activity indirectly via its effects on trophic resource availability. Seasonal river drying appears to have complex effects on bat foraging activity, initially causing imperfect tracking by consumers of localized concentrations of resources but later resulting in disappearance of both insects and bats after complete river drying. Third, I show that resource tracking by bats varies among streams with contrasting patterns of trophic resource availability and this variation appears to be in response to differences in the timing of aquatic insect emergence, duration and magnitude of emergence, and adult body size of emergent aquatic insects. Finally, I show that aquatic insects directly influence bat activity along a desert stream and that riparian vegetation composition affects bat activity, but only indirectly, via effects on aquatic insect availability. Overall, my results show river channel confinement, riparian vegetation structure, flow permanence, and the timing of floods influence spatial and temporal patterns in bat distributions; but these effects are indirect by influencing the ability of bats to track trophic resources in space and time.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)