Description
Chimeric antigen receptor (CAR)-T cell therapy is a type of cancer immunotherapy has shown promising results in engineering the T cells which targets a specific antigen. Despite their success rate, there are certain limitations to the use of CAR-T therapies that includes cytokine release syndrome (CRS), neurologic toxicity, lack of response in approximately 50% of treated patients, monitoring of patients treated with CAR-T therapy. However, rapid point- of- care testing helps in quantifying the circulating CAR T cells and can enhance the safety of patients, minimize the cost of CAR-T cell therapy, and ease the management process. Currently, the standard method to quantify CAR-T cell in patient blood samples are flow cytometry and quantitative polymerase chain reaction (qPCR). But these techniques are expensive and are not easily accessible and suitable for point- of- care testing to assist real- time clinical decisions. To overcome these hurdles, here I propose a solution to these problems by rapid optical imaging (ROI)- based principle to monitor and detect CAR-T cells. In this project, a microfluidic device is developed and integrated with two functions: (1) Centrifuge free, filter- based separation of white blood cells and plasma; (2) Optical imaging- based technique for digital counting of CAR T- cells. Here, I carried out proof- of- concept test on the laser cut prototype microfluidic chips as well as the surface chemistry for specific capture of CAR-T cells. These data show that the microfluidic chip can specifically capture CAR-T positive cells with concentration dependent counts of captured cells. Further development of the technology could lead to a new tool to monitor the CAR-T cells and help the clinicians to effectively measure the efficacy of CAR-T therapy treatment in a faster and safer manner.
Download count: 5
Details
Title
- Develop a Microfluidic Chip for Digital Counting of CAR-T Cells
Contributors
- Elanghovan, Praveena (Author)
- Wang, Shaopeng (Thesis advisor)
- Forzani, Erica (Committee member)
- Nikkhah, Mehdi (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2023
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: M.S., Arizona State University, 2023
- Field of study: Biomedical Engineering