Full metadata
Title
Develop a Microfluidic Chip for Digital Counting of CAR-T Cells
Description
Chimeric antigen receptor (CAR)-T cell therapy is a type of cancer immunotherapy has shown promising results in engineering the T cells which targets a specific antigen. Despite their success rate, there are certain limitations to the use of CAR-T therapies that includes cytokine release syndrome (CRS), neurologic toxicity, lack of response in approximately 50% of treated patients, monitoring of patients treated with CAR-T therapy. However, rapid point- of- care testing helps in quantifying the circulating CAR T cells and can enhance the safety of patients, minimize the cost of CAR-T cell therapy, and ease the management process. Currently, the standard method to quantify CAR-T cell in patient blood samples are flow cytometry and quantitative polymerase chain reaction (qPCR). But these techniques are expensive and are not easily accessible and suitable for point- of- care testing to assist real- time clinical decisions. To overcome these hurdles, here I propose a solution to these problems by rapid optical imaging (ROI)- based principle to monitor and detect CAR-T cells. In this project, a microfluidic device is developed and integrated with two functions: (1) Centrifuge free, filter- based separation of white blood cells and plasma; (2) Optical imaging- based technique for digital counting of CAR T- cells. Here, I carried out proof- of- concept test on the laser cut prototype microfluidic chips as well as the surface chemistry for specific capture of CAR-T cells. These data show that the microfluidic chip can specifically capture CAR-T positive cells with concentration dependent counts of captured cells. Further development of the technology could lead to a new tool to monitor the CAR-T cells and help the clinicians to effectively measure the efficacy of CAR-T therapy treatment in a faster and safer manner.
Date Created
2023
Contributors
- Elanghovan, Praveena (Author)
- Wang, Shaopeng (Thesis advisor)
- Forzani, Erica (Committee member)
- Nikkhah, Mehdi (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
62 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.187865
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2023
Field of study: Biomedical Engineering
System Created
- 2023-06-07 12:46:15
System Modified
- 2023-06-07 12:46:20
- 1 year 7 months ago
Additional Formats