Description
In the recent years, deep learning has gained popularity for its ability to be utilized for several computer vision applications without any apriori knowledge. However, to introduce better inductive bias incorporating prior knowledge along with learnedinformation is critical. To that

In the recent years, deep learning has gained popularity for its ability to be utilized for several computer vision applications without any apriori knowledge. However, to introduce better inductive bias incorporating prior knowledge along with learnedinformation is critical. To that end, human intervention including choice of algorithm, data and model in deep learning pipelines can be considered a prior. Thus, it is extremely important to select effective priors for a given application. This dissertation explores different aspects of a deep learning pipeline and provides insights as to why a particular prior is effective for the corresponding application. For analyzing the effect of model priors, three applications which involvesequential modelling problems i.e. Audio Source Separation, Clinical Time-series (Electroencephalogram (EEG)/Electrocardiogram(ECG)) based Differential Diagnosis and Global Horizontal Irradiance Forecasting for Photovoltaic (PV) Applications are chosen. For data priors, the application of image classification is chosen and a new algorithm titled,“Invenio” that can effectively use data semantics for both task and distribution shift scenarios is proposed. Finally, the effectiveness of a data selection prior is shown using the application of object tracking wherein the aim is to maintain the tracking performance while prolonging the battery usage of image sensors by optimizing the data selected for reading from the environment. For every research contribution of this dissertation, several empirical studies are conducted on benchmark datasets. The proposed design choices demonstrate significant performance improvements in comparison to the existing application specific state-of-the-art deep learning strategies.
Reuse Permissions
  • Downloads
    PDF (7.6 MB)

    Details

    Title
    • Effective Prior Selection and Knowledge Transfer for Deep Learning Applications
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Electrical Engineering

    Machine-readable links