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ABSTRACT

In the recent years, deep learning has gained popularity for its ability to be utilized

for several computer vision applications without any apriori knowledge. However,

to introduce better inductive bias incorporating prior knowledge along with learned

information is critical. To that end, human intervention including choice of algorithm,

data and model in deep learning pipelines can be considered a prior. Thus, it is

extremely important to select effective priors for a given application.

This dissertation explores different aspects of a deep learning pipeline and pro-

vides insights as to why a particular prior is effective for the corresponding appli-

cation. For analyzing the effect of model priors, three applications which involve

sequential modelling problems i.e. Audio Source Separation, Clinical Time-series

(Electroencephalogram (EEG)/Electrocardiogram(ECG)) based Differential Diagnosis

and Global Horizontal Irradiance Forecasting for Photovoltaic (PV) Applications

are chosen. For data priors, the application of image classification is chosen and

a new algorithm titled,“Invenio” that can effectively use data semantics for both

task and distribution shift scenarios is proposed. Finally, the effectiveness of a data

selection prior is shown using the application of object tracking wherein the aim is

to maintain the tracking performance while prolonging the battery usage of image

sensors by optimizing the data selected for reading from the environment. For every

research contribution of this dissertation, several empirical studies are conducted on

benchmark datasets. The proposed design choices demonstrate significant performance

improvements in comparison to the existing application specific state-of-the-art deep

learning strategies.
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Chapter 1

INTRODUCTION

In the previous decade, deep learning has achieved massive success in a wide variety of

AI applications with varied data modalities including 1-D time series data (Stoller et al.,

2018), image data (Khan et al., 2019) as well as video data (Li et al., 2021). However,

instead of directly adopting popular approaches from the computer vision/AI literature

for different applications, we interpret learning from the neuroscience literature point

of view which suggests, the most effective learning is an outcome of the innate

biological machinery which has the capability to learn and improve based on the

experience (Marcus, 2004, 2018). The idea of cognition is a combination of innate

knowledge (which can be task specific or general) which improves along with experience

in any effective learning mechanism. The patterns that are formed in the brain to

arrive at a logical conclusion for any problem are due to a fusion of prior information

from the innate machinery including innate algorithms, representation formats and

knowledge along with the experience of solving related tasks. Learning by utilizing

this prior information and arriving at an action which is a combination of variety of

tactics that have been used to solve the similar task involves heavy cross-talk between

different regions of brain.

We mimic similar learning mechanism through modern transfer learning pipelines

wherein we want to fuse the prior knowledge to arrive at a rich initialization for a new

task. In other words, if we restrict ourselves to current transfer learning pipelines,

the prior can be thought as the distribution that is imputed in the model before it

is exposed to any new data. Furthermore, the common assumption in most of the

modern AI approaches is the choice of coherent set of tasks for which the existing

1



transfer learning techniques perform well however, much of this success relies on

human selection strategy in terms of task design, data collection mechanism and

model design such as architectural choices. Consequently, this constricts the scope

of a deep learning model such that it becomes limited to a specific set of problems.

Hence, in this work, we explore a more holistic view wherein we consider not only the

model, but the implementation of a deep learning pipeline as a whole, including the

choice of model and the data. Therefore, the prior includes anything from the choice

of the algorithm, model as well as the data. The primary intuition is that the priors

are analogous to the innate knowledge whereas the data from any new tasks adds to

the improved experience and performance. From a statistical viewpoint, it becomes

extremely important to select which priors (model, tasks and domains) are the

most suitable for a given set of problems.

In this dissertation, we systematically study how each of these priors are effective

in improving the performance for problem at hand. Firstly, we explore architectural

designs that are able to form robust feature representations and analyze the effect of

that prior information (model priors) on sequential modelling problems. Secondly,

we also explore the data selection mechanism and data as a prior in this work. We

propose an algorithm to utilize the data semantics in a systematic manner such that

we are able to create powerful data priors which can improve task performance.

1.1 Motivation

The increased integration of deep learning tools in mainstream applications has

triggered the need to microscopically analyze each component of a deep learning

pipeline. Human intervention is a primary selection method for both aspects of a deep

learning scheme including data selection and model selection. Unless these priors are

selected carefully, it can significantly degrade the application performance while also
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increasing the computational complexity. In this dissertation, we isolate each prior

and empirically analyze the performance of an effective prior for a chosen application.

We also provide insights as to why we chose a particular prior for a given application

based on the recurring effective design choices made in the literature. In the next

section, we state the problem and briefly address different applications considered and

what are the design choices for these applications in terms of effective priors.

1.2 Problem Statement

Over the last decade, community-wide research efforts have led to the design of

several effective transfer learning solutions, in particular based on deep neural networks

(DNNs) (Zamir et al., 2018; Devlin et al., 2019; Yang et al., 2019b; Khan et al., 2019).

However, there exists an information gap in terms of whether the deep learning based

solution’s success can be attributed to effective feature-extraction techniques, modern

representation learning paradigms, the ability of model to align itself to novel tasks and

operating environments or the combination of the three (Rajan et al., 2019; Teijeiro

et al., 2017; Finn et al., 2017a; Li et al., 2017a). To this end, in this dissertation, we

systematically study the effect of each component of a typical deep learning pipeline to

get a better understanding of how efficient priors can aid the performance in different

deep learning applications. We consider different paradigms of knowledge transfer and

study the importance of priors in every paradigm.

Knowledge Transfer Paradigms

In recent years, transfer learning has gained huge momentum by improving the

performance of several deep learning applications. Transfer learning has become

commonplace in many computer vision tasks in which a model uses pretrained rep-

resentation as an initialization to learn a more useful representation for the specific

task in hand. To learn a good initialization, in a typical generic supervised learning
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setting, we are given a dataset D = {(xi, yi)}Ni=1 with inputs x ∈ X and labels y ∈ Y .

The goal is to infer a model F with parameters ϕ that maps from inputs x to the

outputs y. The parameters ϕ are inferred using the following MAP formulation:

arg max
ϕ

log p(ϕ|D) = arg max
ϕ

log p(D|ϕ) + log p(ϕ). (1.1)

In practice, the first term is approximated using the empirical risk
∑

i log p(yi|xi, ϕ),

while the second term is often an appropriately chosen regularizer. A learning task

can be specified by a dataset D or by the surrogate function F(ϕ) or it can also be

specified by other datasets.

Another promising approach for transfer learning from multiple tasks/datasets is

exploited in multi-task representation learning (MTRL) paradigms. The intuition of

such multi-task learning strategies is to prefer hypothesis which explains more than

one task by introducing the inductive bias. In a typical MTRL setting, we are given

a set of observed tasks/datasets {Dk}Kk=1. Each task is assumed to be sampled i.i.d.

from a distribution p(D). The assumption is that all the tasks are related and hence

a shared feature representation ϕ can be trained jointly on these tasks. In terms of

generalization to novel tasks, the idea is that since the hypothesis space performs

well for multiple tasks, it will perform well while learning novel tasks. Following the

underlying principles of MTRL paradigm, another approach called meta learning has

emerged for learning information from multiple tasks and generalizing to unseen tasks

proficiently. The primary difference between the two approaches is that while MTRL

methods are typically solved by a simple joint optimization, meta-learning algorithms

use a bi-level optimization procedure. Similar to MTRL, in a typical meta learning

strategy, we have access to multiple observed tasks/datasets {Dk}Kk=1. These observed
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tasks can be used when inferring the parameters ϕ for a new task D,

arg max
ϕ

log p(ϕ | D,Dobs) (1.2)

= log

∫
Θ

p(ϕ | D, θ)p(θ | Dobs)dθ. (1.3)

The primary intuition is that we first infer meta-parameters θ, and subsequently adapt

ϕ using both θ and D.

In a multiple task setting, (Baxter, 2000) was one of the pioneer works which

presented a bound on the expected loss on the unseen task of any hypothesis space.

The method showed that learning multiple related tasks reduces the sampling burden

required for good generalization. Following (Baxter, 2000), several works analyzed

the generalization bounds in MTRL paradigm. In (Maurer et al., 2016), authors

obtained a bound in the order of O(1/
√

(N) + 1/
√

(K)), where K represents number

of observed tasks and N represents number of samples per observed task. However,

this bound is limited to the observed task samples only and not on the number of

samples per novel unseen task implying that increasing the number of samples per

training task cannot improve generalization on new tasks. On the contrary, there

are several research works including (Du et al., 2020; Tripuraneni et al., 2021), that

have developed bounds on generalization in MTRL which are dependent on the

number of novel task samples. In these works, authors have obtained transfer learning

guarantees in the order of O(poly(1/MK)) where M is the number of novel task

samples. However, these guarantees are specified under certain assumptions including

well behaved data generating distributions and notion of task diversity. Moreover,

these bounds are restrictive in the sense that they have been primarily limited to linear

task maps. While many of these existing works assume the task-similarity beforehand

to implement versions of meta learning algorithms, a generalization error bound that

fully utilize all training data by exploiting the proposed task relatedness is reported
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in (Guan and Lu, 2021).

Based on these learning paradigms, in this work we explore knowledge transfer

from the perspective of both data selection as well as model selection. It is evident

that any learning task can be specified by the dataset or by the model parameters.

Acknowledging the information sources in these paradigms, we propose more powerful

data and model based priors that can produce better feature representations and

utilize data semantics effectively.

1.2.1 Model Prior for Audio Source Separation, Clinical Time-series based

Differential Diagnosis and Global Horizontal Irradiance Forecasting for

Photovoltaic Applications

Audio source separation refers to the problem of extracting constituent sound

sources from a given audio mixture. Clinical time-series (EEG/ECG) based differential

diagnosis involves interpreting time-varying recordings of electrical activity from brain

and heart to understand and predict the onset of disease conditions like seizure

activity and myocardial infarction. Global horizontal irradiance forecasting refers to

the prediction of irradiance values in future based on the meteorological parameters

to predict the power output from a photovoltaic array. For such sequence modelling

applications, a recurring design objective in the proposed solutions is to build feature

representations that are robust to inherent data variabilities and can effectively

represent complex, multi-scale dependencies in the data. We propose the idea of a

robust model prior which can automatically infer multi-scale features (Lea et al., 2017;

Bai et al., 2018a) and serve as an effective design choice from the standpoint of feature

reuse and combating the vanishing gradient problems for sequential data.
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1.2.2 Task and Domain Prior for Data Efficient Learning

Utilizing transfer learning for data efficient image classification has gained signifi-

cant interest in last decade among the vision community. There are several approaches

which achieve unparalleled performance gains by exploiting pre-training strategies (De-

vlin et al., 2018; Yang et al., 2019a). However, such task specific performance control

can be shattered with the variability in testing scenarios wherein there are unforeseen

tasks and domain shifts. Hence instead of assuming similar task semantics at the

training and testing time, we propose an optimization protocol titled Invenio which

creates a semantic space of tasks and domains and extracts meaningful prior infor-

mation (task/domain prior) which is able to quantify how difficult it is to transfer

information from one scenario to another.

1.2.3 Data Selection as a Prior for Energy-Efficient Object Tracking

The analog readout circuitry of image sensors which capture the image/video

data can consume 50-70% of the total energy in most modern mobile system de-

signs (LiKamWa et al., 2016; Buckler et al., 2017). Hence, to prolong battery life

and address inefficient energy expenditure recent research is looking for methods to

improve the image sensors such that the required power consumption can be reduced.

To this end, we propose to use desired data selection from the image sensors as a

way to optimize the power consumption. Hence, we study data selection mechanism

as a prior in an online setting. We propose an adaptive subsampling strategy which

selectively performs data capture based on the objects of interest. Effective data

selection has proved several benefits in terms of reduced data quantization, faster

bandwidth and improved energy efficiency.
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1.3 Statement of Contributions

1.3.1 Development of Robust Model Priors

Audio Source Separation Audio source separation refers to the problem of

extracting constituent sound sources from a given audio mixture. Modern audio

source separation techniques rely on optimizing sequence model architectures such

as, 1D-CNNs, on mixture recordings to generalize well to unseen mixtures. We use

Wave-U-Net as our base architecture which exploits temporal context by extracting

multi-scale features (Narayanaswamy et al., 2019b; Stoller et al., 2018). However,

the optimality of the feature extraction process in these architectures has not been

well investigated. In this work, we examine and recommend critical architectural

changes that forge an optimal multi-scale feature extraction process. To this end, we

replace regular 1D convolutions with adaptive dilated convolutions that have innate

capability of capturing increased context by using large temporal receptive fields.

We also investigate the impact of dense connections on the extraction process that

encourage feature reuse and better gradient flow. The dense connections between the

downsampling and upsampling paths of a U-Net architecture capture multi-resolution

information leading to improved temporal modelling.

Clinical Time-series based Differential Diagnosis Interpreting time-varying

recordings of electrical activity from the heart and brain, is central to understanding a

gamut of abnormalities or detecting the onset of disease conditions. Processing short-

and long-term EEG recordings is imperative for predicting the neurological state of a

subject, such as detecting seizure events or early onset of abnormalities. Similarly,

ECG interpretation is essential for detecting a variety of cardiac abnormalities, namely:

atrial fibrillation (AF), myocardial infarction (MI) and arrhythmia. In this dissertation,
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we demonstrate that an effective model prior can improve the performance for a wide-

range of diagnostic tasks (Thiagarajan et al., 2020). We find that adaptively dilated

causal convolutions are an effective choice for the foundational computational unit to

process clinical time-series data, and when coupled with dense architectures, it can

outperform state-of-the-art diagnostic solutions.

Global Horizontal Irradiance Forecasting in Photovoltaic (PV) Applica-

tions In order to ensure the stability of a photovoltaic array output, we propose a

weather feature based solar irradiance forecasting strategy which can aid in regulating

and planning the operation of a grid integrated solar array (Duverger et al., 2017; Rao

et al., 2020). This idea was inspired by shading based topology reconfiguration works

which have shown to improve the PV power output performance previously (Katoch

et al., 2018b; Narayanaswamy et al., 2019a). In this application, we utilize a model

prior, which uses dilated causal 1-D convolutional layers to extract robust temporal

features (Bai et al., 2018a). The dilations lead to increased receptive field which aids

to see global horizontal irradiance data much farther in the past and hence improve

the forecasting performance.

1.3.2 Development of Efficient Data Priors

Image Classification For the problem of image classification, several sophisticated

transfer learning approaches are often found to be brittle when applied in scenarios

characterized by challenging domain and task shifts. Several transfer learning methods

operate under the assumption that the observed set of tasks or domains are realizations

from a common distribution. However, in practice, the degree of similarity between

tasks or domains are unknown a priori, and hence the assumption of finding a single

base learner could be restrictive. To this end, in this work, we present Invenio, a
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scalable model agnostic protocol, that can effectively infer the semantic structure of

the space of tasks (or domains) (Katoch et al., 2019b). By extracting useful prior

information from the inferred semantic space, most relevant train tasks (domains)

can be used to drive the adaptation for a test task (domain). We show that Invenio

can produce significant performance improvements in both task shift and domain

shift scenarios, when compared to popular modeling choices that do not leverage the

inherent semantic structure.

1.3.3 Development of Data Selection Mechanism as a Prior

Energy-Efficient Object Tracking In the field of video object tracking, recent

research has turned to embedded or energy-efficient object tracking where system

constraints on power and latency are critical for extended deployment in the wild.

To address inefficient energy expenditure in the processing of real-time video data,

we propose an important data selection mechanism for image sensors i.e. adaptive

subsampling (Katoch et al., 2019a). Adaptive subsampling is the selective readout of

regions of interest (ROIs) in sequential frame capture while turning off other pixels in

the image. Energy per pixel and spatiotemporal resolution of the streaming images

are inversely proportional, i.e. lower frame rates and image resolutions consume

less energy (LiKamWa et al., 2013). Using this adaptive subsampling mechanism,

the proposed method outperforms the state-of-the-art tracking methods in terms of

tracking efficiency and reduces power consumption during image sensing.

1.4 Organization of the Dissertation

In this dissertation, we present the importance of prior selection in performance of

deep learning based methods. We show that due to varied applicability of deep learning

based solutions, they will be put in environments wherein the human intervention
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for model design and data handling is not trivial. Hence such constraints should be

considered during algorithm design so that there is inherent knowledge that when a

new problem occurs, which priors can be effectively used. In Chapter 2, we emphasize

on the model prior in terms of making significant architectural choices and how

those choices improve the performance across several applications such as, Audio

Source Separation, Clinical Time-Series (EEG/ECG) based Differential Diagnosis and

Global Horizontal Irradiance Forecasting. In Chapter 3 and 4, the priority is given to

understanding the task and domain priors. In Chapter 3, we introduce Invenio, a data

conscious optimization technique, which is able to infer semantic similarities between

a given set of tasks/domains. In Chapter 4, we explore how Invenio, can be modified

based on the problem at hand i.e. it can leverage the inferred semantic structure to

generalize to unobserved domains, construct semantic space of task distributions as

well as utilize task similarity knowledge for effective multi-task learning. In Chapter

5, we discuss about data selection mechanism in terms of adaptive subsampling for

video object tracking. We compare the tracking performance in the presence of fully

sampled data, random subsampling as well as adaptive subsampling and show how

the proposed method is able to compete with the state-of-the-art. Finally in Chapter

6, we summarize our work and conclude the dissertation.
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Chapter 2

MODEL PRIORS

In this chapter, we study the unique challenges which are presented in dealing

with time series data which has warranted the design of several novel neural network

architectures. Existing solutions for time-series data are specialized to the task under

consideration or the modality utilized, and rarely are they actually tested across

different problems. Consequently, it is cumbersome to choose from the vast array

of existing modelling choices and find an appropriate solution for new problems. A

recurring design objective in these solutions is to build feature representations that are

robust to inherent data variabilities and can effectively represent complex, multi-scale

dependencies in the data. Taking this design objective into account, in this chapter

we demonstrate effective architectural choices that work on a wide-range of sequential

data processing tasks. We show that in the context of sequential data processing, the

use of dilated convolutions is key to obtain robust multi-scale features and hence a rich

temporal context. Along with dilated convolutions, utilizing the dense connections

in the architecture helps in modelling long range dependencies and hence provides

significant modelling power. We study the impact of these model priors in three areas

i.e. Audio Source Separation, Clinical Time-series (EEG/ECG) based Diagnostics

and Global Horizontal Irradiance Forecasting for PV Applications as shown in the

following sections.

2.1 Audio Source Separation

Audio source separation refers to the problem of extracting constituent sound

sources from a given audio mixture. Despite being a critical component of several
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audio enhancement and retrieval systems (Spanias et al., 2006), the task of source

separation is severely challenged in practice due to variabilities in acoustic conditions.

Mathematically, this is posed as an inverse problem, and classical regularized optimiza-

tion techniques such as independent component analysis (ICA) (Makino et al., 2004)

and matrix factorization are often employed (Thiagarajan et al., 2013). However,

such unsupervised approaches are known to be effective only under specific conditions

(e.g. fully determined) and hence several state-of-the-art solutions (Grais et al.,

2018), (Pascual et al., 2017), (Stoller et al., 2018), (Jansson et al., 2017) increasingly

rely on supervisory deep learning techniques, that directly learn the inverse mapping

using mixture-source pairs. This was motivated by the success of deep learning in

solving several highly ill-conditioned inverse tasks in computer vision, such as im-

age completion and super-resolution (Ulyanov et al., 2018). A recurring idea in the

broad class of recent source separation techniques is to adopt an encoder-decoder

style architecture, powered by convolutional or generative adversarial networks, for

end-to-end optimization of the inversion process. While these data-driven solutions

have produced unprecedented success in audio source separation, their performance

depends heavily on the choice of data processing strategies and network architectures.

Until recently, majority of source separation techniques operated in the spectral

domain, in particular based on the magnitude spectra. However, by ignoring the crucial

phase information, these methods required extensive tuning of the front end spectral

transformation for producing accurate separation results. Recently, in (Stoller et al.,

2018), Stoller et. al. argued that the need for optimizing spectral transformations can

be entirely eliminated by directly operating in the time domain, and that the source

recovery quality can be significantly improved by not rejecting the phase information.

On the other hand, such a fully time-domain approach necessitates the need to deal

with very long temporal contexts at high sampling rates, thus making the network
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training quite challenging. Stoller et. al. addressed this critical limitation by proposing

the Wave-U-Net that leverages multi-scale features obtained using a combination of

1D-convolutions and resampling strategies in a U-Net, which is a fully convolutional

network widely adopted in semantic segmentation (Ronneberger et al., 2015). In

general, U-Nets are comprised of a downstream and an upstream module, wherein the

former module produces multi-scale features by successively downsampling the audio

signals while the latter utilizes resampling in order to produce appropriate context

information for subsequent layers. In order to obtain meaningful gradients at different

temporal scales, the network allows information propagation between the downstream

and upstream layers using skip connections. Though Wave-U-Net outperformed several

existing baselines, the optimality of the multi-scale feature extraction process has not

been studied yet. Further, conventional upsampling was found to produce undesirable

aliasing artifacts, thus requiring the design of an adaptive interpolation scheme.

2.1.1 Related Work

In this section, we briefly review existing approaches in the literature that utilize

deep neural networks for audio source separation. There exists a large body of prior

work for source separation using time-frequency representations typically, short-time

Fourier transforms (STFTs) (Uhlich et al., 2017; Liutkus et al., 2017; Luo et al., 2017).

While (Uhlich et al., 2017) and (Liutkus et al., 2017) operated with spatial covariance

matrices for source separation in the STFT domain, Luo et al. (Luo et al., 2017) used

the magnitude spectrogram as the representation for a mixture and its constituent

sources. Due to inherent challenges in phase spectrum modification, much of existing

literature has focused on the magnitude spectrum, while including an additional step

for incorporating the mixture phase information, which often leads to inaccurate

determination of source signals (Stoller et al., 2018). Furthermore, with low-latency
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systems, large window lengths are needed for effective separation in the STFT domain.

A common approach to address these drawbacks is to entirely dispense the spectral

transformation step and build the estimation algorithm in the time-domain directly.

Popular instantiations of this idea include the MultiResolution Convolutional Auto-

Encoder (MRCAE) (Grais et al., 2018), TasNet (Luo and Mesgarani, 2018) and the

Wave-U-Net (Stoller et al., 2018). MRCAE (Grais et al., 2018) is an autoencoder-

style architecture comprised of multiple convolution and transpose convolution layers,

wherein each layer supports filters of different sizes. Note that, this is analogous

to capturing audio frequencies with multiscale resolutions. A crucial limitation of

this approach is its inability to deal with long temporal sequences - results reported

were with 1024-length sequences, which is often insufficient to model the complex

dependencies at high sampling rates. On the other hand, TasNet (Luo and Mesgarani,

2018), which is also an encoder-decoder style framework, represents an audio mixture as

a weighted sum of basis signals, wherein the estimated weights indicate the contribution

of each source signal and the filters from the decoder form the basis set. However,

given that the architecture is designed for low-latency scenarios, similar to MRCAE,

it deals with only short sequences.

In order to support the use of long temporal sequences, Stoller et.al. (Stoller et al.,

2018) proposed the Wave-U-Net model, which uses a U-Net based architecture and

can deal with even 80,000- sample long sequences. While the contracting downstream

part captures features at different scales, the expanding upstream part successively

produces high-resolution features. Furthermore, skip connections are used between

downstream and upstream layers, in order to obtain meaningful gradients at different

temporal scales. However, as we show in this chapter, the design of the multi-layer

feature extraction process plays a critical role in the performance of this architecture.

Furthermore, the training of such multi-scale feature learning networks, particularly
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with very deep downstream and upstream modules, can be significantly challenging.

We propose to incorporate dense connections, that are known to implicitly encourage

feature-reuse (Huang et al., 2017b), to alleviate this challenge.

2.1.2 Proposed Approach

The task of audio source separation involves separating a given mixture waveform

M ∈ RLm×C into K constituent source waveforms [S1, . . . SK ], where each Si ∈ RLn×C .

Here, Lm and Ln denote the lengths of the mixture and the sources respectively, and

C represents the number of channels. In our formulation, we consider Lm = Ln, C = 2

implying stereo and the mixing process is a unweighted sum of sources.

Background: The Wave-U-Net Model

The proposed approach is based on the Wave-U-Net architecture in (Stoller et al., 2018),

which utilizes an encoder-decoder style architecture. This model follows a standard

U-Net design and is comprised of 12 convolutional layers, in both the downstream and

upstream parts. Each convolutional layer is followed by a factor 2 decimation to obtain

successively higher resolution information along the downstream path. Similarly, in

the upstream path, bilinear interpolation coupled with an 1D convolution layer is

used to perform upsampling. In addition, skip connections are included between every

convolutional layer in the downstream and upstream paths.

The number of filters in the first downstream layer is fixed at f = 15 and is

increased in the subsequent layers as f + f × (i − 1)i where i represents the layer

index. The kernel size for the filters was chosen to be 15 in all layers. The upstream

path also has similar filter configurations except that the kernel size was chosen to

be 5. Finally, the model contains a bottleneck block consisting of a convolution layer

with f + f × (i) filters and kernel size 15. Note that all convolutional layers included
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the LeakyReLU activation function. The final source prediction layer uses the tanh

activation. The loss function for training the model includes the Mean Squared Error

(MSE) for each of the sources. Furthermore, an energy conservation constraint is

imposed by directly estimating only K − 1 sources and obtaining the Kth source as

the difference between the input mixture and the sum of estimates for K − 1 sources.

Dilated U-Net

As discussed earlier, the performance of source separation approaches that operate

directly in the time-domain rely heavily on the quality of the feature extraction process.

In particular, building a generalizable model requires the ability to model a wide-range

of temporal dependencies, which in turn requires effective multi-scale feature extraction.

Furthermore, it was found in (Stoller et al., 2018) that the choice of resampling scheme

was very sensitive. Hence, we propose to employ dilated convolutions to seamlessly

incorporate multi-scale features, thereby dispensing the need for explicit resampling.

The proposed Dilated U-Net architecture is illustrated in Fig. 2.1.

This model consists of 6 convolutional blocks in the downstream path, where every

block contains 3 dilated convolutions with filter configurations similar to that of Wave-

U-Net. Within each block, the dilation rate of the layers increases exponentially by a

factor of 2. We have chosen the dilation rate of the first layer in the consecutive block

to be the same as the dilation rate of the last layer in preceding block. This strategy

results in providing a wide range of dilation rates from [1...4096] which increases the

effective receptive field, thereby producing improved multi-scale features from the

audio excerpt. Note that, all layers perform convolution with a stride of 1 and employ

same padding. The bottleneck block consists of three 1D convolution layers with

dilation rate 1, stride 1 and same padding. Correspondingly, the upstream path also

consists of 6 blocks of transposed dilated convolutions, wherein the configurations were
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Figure 2.1: Dilated U-Net - Each Convolutional Block Consists Of Three 1D Con-
volutions Wit Exponentially Increasing Dilation Factors. Note That, The Upstream
Part Utilizes Dilated Transposed Convolutions to Recover the Sources.

chosen to reflect the downstream path. The use of skip connections, and the process of

source estimation follow (Stoller et al., 2018). By retaining the training protocol and

loss functions, we hope to quantify the impact of the proposed architectural changes.

Dilated Dense U-Net

While the Dilated U-Net enables seamless incorporation of multi-scale features, with

increasing depths in downstream and upstream paths, the network training becomes

very challenging. We propose to improve this by employing dense connections in the

networks, that supports feature reuse and protects against vanishing gradients. The
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Dilated Dense U-Net architecture proposed in this work is illustrated in Fig. 2.2. The

architecture is very similar to the previous case, with the key difference that each block

(a.k.a dense block), contains dense connections between the dilated convolutional

layers. More specifically, within every dense block, the feature maps produced by each

layer are concatenated to the subsequent layers in the block to exploit the advantages

of feature reuse and improved gradient flow. This can however lead to a large number

of feature maps which may be computationally infeasible to process. In order to

control the growth of the number of feature maps, we include a transition block which

performs dimensionality reduction at the end of every dense block.

The bottleneck block consists of three 1D convolution layers that are densely

connected with the dilation rates and stride equal to 1 with same padding. Corre-

spondingly, the upstream path consists of 6 dense blocks where each block contains

3 transposed convolution layers with dilation rates same as the corresponding block

in the downstream path. Furthermore, in this model, the skip connections between

the respective blocks along the paths are made dense, implying that the feature maps

from the block in the downstream path are concatenated to all following layers in

the corresponding dense block at the upstream path. Finally, the process of source

extraction is identical to the Dilated U-Net.

2.1.3 Experiments

In this section, we evaluate the proposed approaches using the publicly avail-

able MUSDB18 dataset and present comparisons to the state-of-the-art Wave-U-Net

model (Stoller et al., 2018). Before presenting the performance evaluation, we will

first discuss the impact of different design choices on the overall performance. This

study provides important insights into the behavior of source separation approaches

that operate directly in the time-domain.
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Figure 2.2: Dilated Dense U-Net - Similar to Fig. 2.1, Every Convolutional Block Is
Comprised of Three 1 D Convolutions With Exponentially Increasing Dilation Factors.
In Addition, We Allow Dense Connections Between Convolutions Within Each Block
as Well as Across the Downstream And Upstream Paths.

Setup We use the MUSDB18 dataset (Rafii et al., 2017) for our experiments, which

is comprised of 75 tracks for train, 25 for validation and 50 for testing. The dataset

is encoded in the stems format, and contains multi-stream files of separate sources

i.e. bass, drums, other and vocals and resampled to 22050 Hz. In our experiment

setup, we use segments of 16, 384 samples each (1sec) and adopt a simple additive

mixing process, following current practice. Note that, in (Stoller et al., 2018), the

authors found that using much larger input contexts (Lm > Ls) produces improved

results. However, to measure the effective performance of the architectural choices
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alone, we benchmark without the additional input context. We also performed data

augmentation similar to (Stoller et al., 2018), wherein the source signals are scaled

using a randomly chosen factor in the interval [0.7, 1]. All models reported in this

work were trained using the Adam optimizer with a learning rate of 0.0001 and a batch

size of 16. While the results for the initial study were obtained by training for only

30 epochs, the actual performance metrics were obtained by training for longer (80

epochs). The mean and median signal-to-distortion ratio (SDR) for each of the sources

over the entire dataset are computed. The SDR metric takes into account the noise

arising from interference and other artifacts in the estimated audio sources (Vincent

et al., 2006). The mean SDR is computed after removing silence regions. Since the

mean value can be affected by outliers from near-silence regions we also report the

median SDR which is known to be more unbiased.

Impact of Design Choices As discussed earlier, the source separation performance

depends heavily on the architecture choices for multi-scale feature extraction. Hence,

we first study the impact of different dilation schemes in the proposed architecture,

wherein we entirely eliminate the resampling process using dilated convolutions.

As described in the previous section, our architecture is comprised of 6 blocks of

convolutional layers. In its simplest form, we use conventional 1D convolutions with

the dilation rate fixed at 1 in all layers. In addition, we consider the case where it was

fixed at a constant value (512) and the case with the proposed adaptive dilation scheme.

As observed in Fig. 2.3(a), the sub-optimal performance of conventional 1D convolution

clearly shows the importance of leveraging multi-scale features. Furthermore, the

proposed adaptive dilation scheme provides a significant performance boost compared

to using fixed dilation in all layers. Similarly, we analyzed the impact of using dense

connections on the separation performance. For this experiment, we fixed the dilation
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rate at a constant value of 512 and the number of convolutional blocks at 1 and 3

respectively. As showed in Fig. 2.3(b), as the depth of the network increases, using

dense connections provides significant gains.

Figure 2.3: Effect of Design Choices on the Source Separation Performance (Mean
SDR (dB)) - (a) Impact of the Choice of Dilation Rates in Different Layers of the
Model. An Adaptive Learning Provides a Significant Performance Boost. (b) Impact
of the Use of Dense Connections as the Depth of the Architecture Increases.

2.1.4 Performance Evaluation

In this section, we report the overall performance of the proposed approaches,

namely Dilated U-Net and Dilated Dense U-Net, on the MUSDB18 dataset. Though

a number of baseline techniques exist for time-domain source separation, we chose to

compare against the state-of-the-art Wave-U-Net architecture from (Stoller et al., 2018).

Table 2.1 compares the mean/median SDR (dB) for each of the constituent sources

for the testing set in MUSDB18. The first striking observation is that by improving

the multi-scale feature extraction process, we could obtain significant performance

improvements over the baseline in all cases. In particular, our approaches provide

improvements between 0.2dB and 1.2dB. While the dilated variant eliminates the

need for explicit resampling by capturing information from exponentially increasing

22



Source Wave-U-Net Dilated U-Net Dilated Dense U-Net

Mean SDRMedian SDRMean SDRMedian SDRMean SDRMedian SDR

Vocal -3.292 2.643 -3.787 2.561 -2.986 2.83

Drums 1.435 3.310 2.163 3.977 2.449 3.934

Bass -1.935 1.942 -0.738 3.08 -1.023 2.711

Other 0.986 1.911 0.953 1.945 1.187 2.039

Table 2.1: Source Separation Performance Obtained Using Different Architectures on
the MUSDB18 Corpus. We Show the Mean and Median Signal-To-Distortion Ratio
(In dB) And in Each Case the Best Results Are Highlighted in Bold.

receptive fields, the inclusion of dense connections improves the robustness of the

training process. This performance gain clearly evidences the dependence of these

complex data-driven solutions for audio processing on the inherent feature extraction

mechanism, and the need for improved architecture design.

In the next section, we look at the application of Clinical Time-series based Differ-

ential Diagnosis. With the similar design choice of using dilated dense convolutions,

we could improve the performance for a given diagnostic task.

2.2 Clinical Time-series based Differential diagnosis

Precise differential diagnosis plays a crucial role in enabling robust decision-making

and realizing effective patient care. In particular, interpreting time-varying recordings

of electrical activity from the heart and brain is required frequently for clinical

diagnosis and is central to understanding a gamut of abnormalities or detecting the

onset of disease conditions. More importantly, a wide range of non-invasive diagnostic

modalities, e.g. ECG (electrocardiogram) and EEG (electroencephalogram), have

become highly prevalent because of their cost efficiency, thus leading to a deluge

in diagnostic data being generated. Consequently, in the recent years, there has
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been a rapid growth in automation approaches for performing effective coarse/fine

characterization of these measurements. Since it is almost impossible to recreate the

complex decision-making process of clinical experts, when it comes to discriminating

between multiple seemingly-similar conditions and handling inherent variations in

the data, these automation methods rely almost entirely on data-driven pattern

discovery (Faust et al., 2018). There are several AI-powered solutions that have

produced unprecedented successes for a variety of challenging tasks in heart/brain

health monitoring. However, in practice, choosing an appropriate solution for a

new problem from the vast array of existing modelling choices is a cumbersome

process. Consequently, in this work we explore the architectural choices that can be

generic and hence, can operate across different scenarios effectively. The different

scenarios considered in this work include EEG-based abnormality detection, ECG-based

arrhythmia classification and ECG-based myocardial infarction detection. For all the

applications considered in this work, we present DDxNet, a novel architecture composed

of dilated convolutions, which can automatically infer multi-scale features (Lea et al.,

2017; Bai et al., 2018a) without the need for explicit feature pooling operations,

and hence can be used for processing any sort of clinical time-series data. In this

work, we also employ adaptively dilated causal convolutions which prove to be an

effective choice for the foundational computational unit to process clinical time-series

data, and when coupled with dense architectures can provide significant modelling

power. Our empirical studies clearly evidence that our approach, with no additional

architecture tuning, outperforms state-of-the-art solutions specifically designed for

different benchmark tasks. In addition to producing highly effective predictive models,

DDxNet enables rapid prototyping of solutions in practice.
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2.2.1 Related Work

Over the last decade, community-wide research efforts have led to the design of

several predictive modelling solutions, in particular based on deep neural networks

(DNNs), that can perform an accurate characterization, while being resilient to the

inherent data challenges including sampling discrepancies, low-fidelity of measurements,

class imbalances etc. A formal introduction to this large body of work can be found

in broader survey articles such as (Faust et al., 2018; Miotto et al., 2017; Esteva et al.,

2019). These AI-powered solutions have produced unprecedented successes for a variety

of challenging tasks in heart/brain health monitoring (Clifford et al., 2017; Rajpurkar

et al., 2017; Schirrmeister et al., 2017; de Diego, 2017; Rajan and Thiagarajan, 2018;

Rajan et al., 2019; Kachuee et al., 2018; Roy et al., 2018; Sourkov, 2018). The research

in this space has also been accelerated by the curation of large-scale, open-source

databases such as the TUH-corpus (Temple University) (Obeid and Picone, 2016),

PhysioNet (Goldberger et al., e 13) and Mimic (Harutyunyan et al., 2019).

Though it might appear natural to directly adopt popular approaches from the

computer vision/AI literature, e.g. recurrent models and convolutional neural networks

(CNNs), the unique challenges in dealing with clinical data has warranted the design

of novel network architectures and improved training strategies. Consequently, state-

of-the-art solutions often rely on a carefully chosen combination of classical feature-

extraction techniques as well as modern representation learning paradigms (Rajan

et al., 2019; Kachuee et al., 2018; Teijeiro et al., 2017; Hong et al., 2017; Acharya et al.,

2017; Strodthoff and Strodthoff, 2018). A recurring design objective in these solutions

is to build feature representations that are robust to inherent data variabilities and

can effectively represent complex, multi-scale dependencies in the measurements (Roy

et al., 2018; Sourkov, 2018). Driven by the need for portable and rapid patient care,
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researchers have also explored the inclusion of additional constraints such as using only

subset of the measurements, e.g. a single-lead ECG in lieu of 12 channels, to perform

diagnosis, and found data-driven methods to be surprisingly effective (Rajpurkar et al.,

2017). However, the primary drawback is the difficulty to choose an appropriate design

choice that works across different problems. In this work, we build an architecture that

requires both the design of computing units that are suitable for different modalities and

task characteristics. Furthermore, we also perform rigorous empirical validation that

the proposed architecture can perform competitively against specialized approaches.

2.2.2 Proposed Approach

We present a multi-specialty diagnosis model, DDxNet, that we demonstrate to

be an effective architecture for a wide-range of diagnosis tasks, while enjoying the

computational benefits of state-of-the-practice solutions. DDxNet is a fully convolu-

tional architecture, similar to several existing state-of-the-art (Miotto et al., 2017;

Rajan et al., 2019; Rajpurkar et al., 2017) solutions in clinical diagnosis, which are

known to be superior to conventional methods relying on hand-engineered features.

While resnet-style solutions have produced unprecedented success with challenging

problems in clinical diagnosis, e.g. atrial fibrillation detection from ECG and seizure

onset prediction using EEG measurements, DDxNet utilizes dense connections between

stacked convolutional layers (Huang et al., 2017b), along with multi-scale feature

extraction, for improved modelling. While a systematic control of how the network

expands provides meaningful abstractions of patterns in time-varying data, including

dense connections ensures maximal information flow between layers in the network. In

contrast to resnet-style architectures (Rajpurkar et al., 2017), which combine features

through summation before they are forwarded to the next layer, we combine features

by concatenating them. Through this connectivity pattern, the multi-scale abstraction
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can be entirely accessed by the later layers, thus leading to much improved feature

representations. Further, as argued in (Huang et al., 2017b), using dense connections

will ensure that the features are reused, thus avoiding redundancy in the learned

feature maps.

Architecture We now describe the architectural choices required to design DDxNet,

illustrated in Fig. 2.4. DDxNet is built by stacking blocks of convolutional layers

designed to capture multi-scale patterns in temporal data through dilated causal

convolutions, and to compound meaningful abstractions from those patterns.

Conv-1D

Max Pooling
ENTRY BLOCK

DDxblockSTAGE 1

4X 

Transition Block

DDxblock

6X 

Transition Block

DDxblock

8X 

Transition Block

DDxblock

4X 

Transition Block

STAGE 2

STAGE 3

STAGE 4

Average Pooling

Fully Connected Layer

ReLU + Conv-1D

ReLU + Conv-1D

ReLU + Conv-1D

Average Pooling

regular 1-D convolutions

dilated causal 1-D convolutions

Figure 2.4: An Illustration of the Proposed DDxNet Architecture. DDxNet Builds a
Densely Connected Networks With Dilated Causal Convolutions, Wherein the Dilation
Factor Is Adaptively Adjusted for Extracting Multi-Scale Features. Each DDxblock Is
Comprised of a Bottleneck Layer and a Convolutional Layer Designed According to
the Growth Rate Hyper-Parameter. Each Processing Stage Is Followed by a Transition
Block Which Performs Temporal Aggregation Prior to Invoking the Next Stage.
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A Multi-stage Fully Convolutional Model The architecture is comprised of a

sequence of repeating convolutional blocks – the outputs of a block are concatenated

with the input to that block, before being forwarded to the next convolutional block.

DDxNet is based entirely on 1−D convolutions that computes filter activations only in

the temporal dimension. Referred to as a DDxblock, each block contains a bottleneck

convolution layer with kernel size k = 3, followed by another convolution layer. Each

DDxblock block produces the same number of output features, and the growth rate

parameter controls the rate at which the network expands. Our network contains a

total of 4 processing stages, wherein each of the stages contains 2, 6, 8 and 4 DDxblocks

respectively. Prior to invoking the multiple stages of densely connected convolution

layers, the input is processed using a convolutional layer with k = 7 and a max pooling

layer.

Note that, after each stage, we include a transition block, that performs temporal

aggregation through average pooling with stride s = 2, and then carries out channel-

wise dimensionality reduction using a bottleneck convolution layer with k = 1. The

resulting features from the transition block in the final stage are processed through

an average pooling layer to produce a single feature vector for the entire sequence.

The final classification layer is implemented using a single fully connected layer with

softmax activation. In contrast to CNN architectures used in vision applications, we

do not perform batch normalization in any stage of the network. We found in our

empirical studies that using batch normalization resulted in a poorer convergence

behavior during training.

Adaptive Dilation Dilated convolutions have become an integral part of several

successful sequence-data processing approaches – examples include Wavenet (Van

Den Oord et al., 2016), segmentation networks (Lea et al., 2017) and temporal convo-
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lutional networks (Bai et al., 2018a). Basically, dilated convolutions are convolutions

with expanded receptive fields. As a result, stacking dilated convolutions with increas-

ing dilation factors amounts to obtaining a multi-scale abstraction of the input signal.

In a standard 1-D convolution with k = 3, the feature activations are obtained based

on the adjacent time-steps. When the dilation factor is set at d, a dilated convolution

with the same kernel size applies the filter to every (d− 1)th instead of the directly

adjacent time-steps. This effectively captures a larger context without the need to

explicitly perform down-sampling of the signal. Every DDxblock is implemented using

dilated convolutions, wherein the dilation factor is increased exponentially within each

stage as follows:

di = min(128, 2i+2), (2.1)

where i denotes the index of the DDxblock in each stage. This enables a principled

way to extract multi-scale features from the time-varying clinical data and effectively

back-propagate gradients through the multiple stages. Note that, we set the maximum

dilation factor 128, since for the most commonly adopted sampling rates in clinical

recordings, larger contexts produce features that do not generalize well. This observa-

tion corroborates well with the results in a recent work (Song et al., 2018a), where the

authors designed an attention-only architecture for clinical modelling, and found that

larger contexts while computing the attention weights led to poorer generalization.

Causal Convolutions Another important feature of DDxNet is that it employs

causal convolutions. With causal convolutions, the activations that a layer produces

at time-step t of the signal depends only on data obtained before t. While this is

commonly used in speech synthesis models such as the Wavenet (Van Den Oord

et al., 2016), their importance in diagnostic models has not been well-studied yet. In

particular, when there are repetitive patterns in the measurements, enforcing causality

29



while computing the receptive field will not lead to improved representations. However,

when the data under consideration is highly non-stationary, enforcing causality can

be highly beneficial. Hence, DDxNet employs causal convolutions in all stages, while

retaining normal convolutions (without causality or dilation) in the entry and transition

blocks.

Training While the proposed architecture is expected to demonstrate desirable

convergence behavior even when the networks are very deep, we observed that addi-

tional regularization can be highly beneficial, particularly when training data sizes are

small. DDxNet uses a weight regularization of 0.01 for all network parameters, applies

gradient clipping and performs label smoothing (Pereyra et al., 2017) on top of the

loss function. Interestingly, we found that using dropout in the network resulted in

lower performance, and hence none of the layers in DDxNet uses dropout. For binary

classification problems, we used the binary cross entropy loss, and the categorical cross

entropy for multi-class problems. DDxNet is implemented in PyTorch and the networks

were trained using the Adam optimizer. Furthermore, we found that performing warm

restarts during model training, following the idea in (Loshchilov and Hutter, 2016),

was beneficial in all our experiments. On the other hand, choosing different schedules

for learning rate decay did not have a significant effect. All results reported were

obtained by starting at the learning rate of 1e− 5, batch size of 64 and training for

100 epochs. Fig. 2.5 shows the training behavior of DDxNet on two different ECG

interpretation problems. As it can be observed, without any additional architectural

modification, DDxNet achieves a stable convergence, even when the network is quite

deep for smaller datasets.
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(a) Loss function (b) Accuracy

(c) Loss function (d) Accuracy

Figure 2.5: Training Behavior – Convergence Characteristics of the Proposed DDxNet
Model, in Terms of the Cross Entropy Loss and Accuracy Scores, for the Arrhythmia
Classification (a-b) And Myocardial Infarction Detection (c-d) Datasets.

2.2.3 Experiments

In pursuit of designing a generic predictive modelling architecture for different

clinical diagnosis tasks, we consider a set of benchmark problems, which vary in the

data modality utilized, the required degree of characterization, and the assumptions on

data fidelity. These benchmarks broadly represent challenges commonly encountered in

cardiovascular/neurological diagnosis, and are typically solved using highly specialized

deep learning solutions. With DDxNet, our goal is to provide an all-encompassing

approach that can seamlessly transition across different scenarios, and to quantitatively

evaluate its effectiveness against strong problem-specific baselines from the literature.

Fig. 2.6 illustrates examples from each of the benchmark datasets.
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Figure 2.6: Example Data From the Different Benchmark Diagnosis Problems
Considered in This Work: (a) Myocardial Infarction Detection; (b) Arrhythmia
Classification; (c) EEG Abnormality Detection. Note That, for the Case of EEG
Abnormality Detection, We Show Only One of the 22 Channels.

EEG-based abnormality detection The complex dynamics of a brain system

can be viewed through EEG signals recorded by non-invasively placing electrodes on

the scalp. Clinical studies focus on determining correlations between these signals

and observable action during abnormal responses. Typically, an EEG technician

reviews numerous montages looking for discrepancies in various frequency bands,

starting with the alpha (7.5 - 12 Hz) component responsible for relaxation. The multi-

dimensional nature of EEG signals carry critical frequency information, but similar

content could mean different outcomes depending on which locations in the brain

they are being picked up from. Consequently, feature representations that preserve

both frequency and spatial characteristics have proven to be successful in prediction

tasks. Further, lengthy recordings tend to be highly noisy due to active patient
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movements such as eye blinking. Finally, the inherent variabilities in measurements

based on patient demographics such as age and gender play a significant role in the

overall interpretation of EEG patterns. For example, an infant showing flat lines

and other turbulent regions in the recordings is normal, while interpreting the same

patterns if it came from an older adult could mean abnormal. A typical process

of EEG interpretation involves analyzing potential epileptic activity, spikes, sharp

waves, background slowing, asymmetrical behavior and natural occurrences of awake,

sleep and drowsy states. This process is known to be cumbersome, given the volume

and long durations of recordings, as subjects are monitored for 48 to 72 hours on

average. Consequently, a first step in automating EEG screening is to accurately

detect abnormalities.

Data and Pre-processing : Building effective abnormality detection approaches has

remained a challenge due to the lack of well-annotated datasets, owing to the labor-

intensive annotation process. Recently, tremendous effort has been made in curating

an open-source dataset, the TUH abnormal corpus, to enable machine learning research

in EEG interpretation (Obeid and Picone, 2016). This dataset is comprised of EEG

sessions from 2993 patients, out of which 1521 are normal and 1472 are abnormal.

Each EEG record includes 22 channels, sampled at 250 Hz in an average reference

(AR) configuration spanning at least 15 minutes long. It is widely accepted in the

community that earlier segments of an EEG session are less likely to be corrupted

by changes in recording conditions, when compared to the later stages (López et al.,

2017). Consequently, in our setup, each sample in our data is constructed as the first

5 minute snapshot of a subject’s EEG. Subsequently, we convert the snapshot into a

transverse central parietal (TCP) montage configuration, which is a common protocol

for abnormality detection. The pre-processing step involves computing Mel Frequency

33



Cepstral Coefficients (MFCC) (McFee et al., 2015) for each channel, a popular feature

extraction technique used in time-varying signal processing – we first resample the

data from 250 Hz to 100 Hz, and use a 2000-point FFT with 40 filters and an overlap

of 100 timesteps, thus resulting in a sample of 880 channels and 301 timesteps.

ECG-based arrhythmia classification A crucial step towards monitoring car-

diovascular health is to detect the presence or absence of abnormal rhythms in ECG.

This typically involves delineation of different wave segments (P-wave, QRS-complex,

T-wave) and their relationships from a standard 12-channel ECG recording. Sev-

eral cardiac diseases including atrial fibrillation, ventricular flutter, tachycardias and

left/right bundle branch blocks (BBB) manifest as anomalous deviations in ECG

channel configurations, where each lead provides a unique perspective on the electrical

activity of the heart. For example, leads II, III, and aVF are used to detect inferior

myocardial infarction, while leads V1 and V6 are used for bundle branch block (Rajan

and Thiagarajan, 2018). Despite that, in telemetry and other ambulatory settings

only a subset of channels are accessible, making the task of abnormality detection

more challenging (Rajan et al., 2019). Consequently, the problem of arrhythmia

detection is often formulated as classifying heartbeats, using only single-channel ECG,

into one of the 5 categories prescribed in the association for advancement of medical

instrumentation (AAMI) EC57 standard. The list of abnormalities are {N, S, V, F,

Q} that can be broadly mapped to {BBB, atrial pre-mature, ventricular premature,

fusion beats, paced beats} respectively.

Data and Pre-processing : The MITBIH database (Moody and Mark, 2001) contains

47 subjects, both inpatients and outpatients from Boston’s Beth Israel Hospital. Each

recording is a two-channel ECG, 48 hours long and sampled at 360 Hz. However,

for the task of arrhythmia classification, the ECG data is initially pre-processed by

34



creating a representation for every heartbeat using the following protocol (Kachuee

et al., 2018): the lead II signal is resampled to 125 Hz and split into normalized

windows of 10 seconds. Subsequently, for each snapshot, we detect the R-peaks and

R-R intervals, essentially generating a heartbeat signal, which is finally classified into

one of the five categories described earlier.

ECG-based myocardial infarction detection Detecting myocardial infarction

(MI) is one of the most crucial problems within the computerized ECG interpretation

community. There have been several solutions proposed to solve this task using both

12 ECG channels as in (Kojuri et al., 2015; Sharma et al., 2015) and (Strodthoff and

Strodthoff, 2018), as well as a limited subset of channels as shown in (Acharya et al.,

2017; Rajan and Thiagarajan, 2018). The standard 12-lead ECG depicts evidence of

ischemic heart diseases that predominantly occur due to the narrowing of blood vessels

caused by atherosclerosis. Abnormalities in ECG segments such as the T-wave and

Q-wave in addition to ST-elevation are typical signs of myocardium damage leading

to a myocardial infarction (MI), commonly referred as a heart attack. Infarction

could occur in different regions of the heart, and are picked up by the corresponding

ECG leads (Rajan et al., 2019). In this problem, we consider the challenging task of

detecting all variants of MI (including lateral, septal and posterior MI) using only a

single channel of ECG (lead II).

Data and Pre-processing : The Physionet PTB database (Bousseljot et al., 1995)

includes 148 subjects with MI and 52 subjects with normal heart rhythms. Each

ECG record is 30 seconds long, sampled at 1 KHz. Similar to the case of arrhythmia

classification, we use a single channel ECG (lead II) resampled to 125 Hz.
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Method Acc (%) Rec (%) Prec (%)

(López et al., 2017) 78.8 75.4 77.8

(Andreotti et al., 2017) 82.2 73.8 85.32

(Bai et al., 2018a) 82.2 77.8 82.35

(Roy et al., 2018) 86.6 83.46 86.7

DDxNet 86.6 87.3 84.0

Table 2.2: EEG Abnormality Detection - Performance of DDxNet On the Publicly
Available TUH Data Corpus. For Comparison, We Report the Results Obtained Using
Several State-Of-The-Art Baselines. The Best Numbers Are Shown in Bold.

2.2.4 Performance Evaluation

Through rigorous empirical analysis with the benchmark problems, we find that,

with the same underlying network architecture, DDxNet produces high detection rates,

often outperforming even problem-specific state-of-the-art solutions, thus motivating its

adoption as a generic approach for clinical diagnosis from time-varying measurements.

Note that, all results reported in this section were obtained using the standard

train-test data splits prescribed in each of the benchmark datasets.

Typically, in EEG-based abnormality detection systems, a high-quality solution is

characterized by a high recall of the abnormal cases, while producing a satisfactory

overall accuracy. Hence, we utilize accuracy, recall and precision for the abnormal

cases as the evaluation metrics.

Acc =
tp + tn

tp + fp + fn + tn
; Rec =

tp

tp + fn
; Prec =

tp

tp + fp
,

where tp, fp, fn, tn correspond to the number of true positives, false positives, false

negatives and true negatives respectively. Table 2.2 reports the abnormality detection

performance on the challenging TUH corpus obtained using DDxNet in comparison to

state-of-the-art baselines.
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Method Acc (%) f1-score

(Kachuee et al., 2018) 93.4 -

(Bai et al., 2018a) 97.7 0.864

(Acharya et al., 2017) 93.5 -

(Liu et al., 2015) 94.4 -

DDxNet 98.5 0.927

Table 2.3: Arrhythmia Classification - Performance of DDxnet With Single-Lead
ECG. Best Numbers Are Shown in Bold.

Most importantly, DDxNet provides the highest recall so far on this dataset, with an

improvement of 4% over the current state-of-the-art ChronoNet, without compromising

on the overall accuracy. Note that, this performance improvement can be attributed

to the key architectural innovations in our approach. Although approaches such as

temporal convolution networks (TCN) (Bai et al., 2018a) and the ResNet (Andreotti

et al., 2017; Rajpurkar et al., 2017) are expected to be effective in clinical diagnosis

tasks as a general solution, DDxNet outperforms the former by ∼ 9.5% improvement

in recall, while significantly improving over the latter (13.5% improvement in recall).

In the arrhythmia classification task, ECG signal abnormalities are assigned to

one of the 5 types of abnormalities elaborated in the 2.2.3. DDxNet was evaluated

and compared to several competitive baseline models that have used both traditional

domain expert-based feature engineering as well as convolutional and recurrent style

neural networks. To obtain a holistic evaluation of the prediction quality, we consider

the overall accuracy and f1-score metrics. Note, the f1-score can be measured as

f1 = 2.
Prec.Rec

Prec + Rec
.

Despite an appreciable imbalance in the label distribution of the MIT-BIH dataset, the

performance of DDxNet exceeds that of existing approaches, achieving an improvement
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Figure 2.7: Confusion Matrix Obtained Using DDxNet For the 5-Category Arrhythmia
Classification Task.

of 5% in terms of prediction accuracy over the state-of-the-art baseline (Kachuee et al.,

2018). The striking observation is that, the performance reported were obtained using

a single channel ECG (lead II), which clearly emphasizes the effectiveness of DDxNet,

even when the data fidelity is low. Further, as showed in Table 2.3, DDxNet leads to

major improvements over existing convolutional neural network solutions (Kachuee

et al., 2018; Acharya et al., 2017). The confusion matrix from our approach, showed

in Fig. 2.7, evidences the ability of DDxNet in handling severe class imbalances.

Given the amount of variabilities within the manifestations of myocardial infarction,

using the entire 12 channel ECG has been long considered to be essential. However,

using the pre-processing described earlier that involves simple heartbeat signal ex-

traction, DDxNet accomplishes near-perfect detection using just a single channel ECG
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Method Acc (%) Rec (%) Prec (%)

(Kachuee et al., 2018) 95.9 95.1 95.2

(Acharya et al., 2017) 93.5 93.7 92.8

(Kojuri et al., 2015) 95.6 93.3 97.9

(Sharma et al., 2015) 96 93 99

(Bai et al., 2018a) 98 98.7 98.6

(Strodthoff and Strodthoff, 2018) - 93.3 93.6

(Rajan and Thiagarajan, 2018) 86 96 -

(Reasat and Shahnaz, 2017) 84.54 85.33 -

DDxNet 99.7 99.7 99.9

Table 2.4: Myocardial Infarction Detection - Performance of DDxNet In Detect-
ing Myocardial Infarction From ECG Recordings. Interestingly, Even With a Single
Lead ECG, DDxNet Achieves Near-Perfect Detection.

(lead II) as shown in Table 2.4, outperforming all other competing solutions including

those that use all 12 channels (Kojuri et al., 2015; Sharma et al., 2015). Note, similar

to the EEG-based abnormality detection experiment, we use the accuracy, precision

and recall metrics.

In the next section, we elaborate on the problem of Global Horizontal Irradiance

Forecasting for PV applications and show how robust model priors obtained using

causal dilated convolutions resulted in improved forecasting performance.

2.3 Global Horizontal Irradiance Forecasting for Photovoltaic Applications

Solar power has emerged as one of the most popular renewable energy sources

in recent years. With increased integration of utility-scale solar arrays in energy

grid, solar irradiance forecasting has become significantly important to quantify the

photovoltaic array power generation efficiency. Global irradiance incident at ground
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depends on the sun’s position as well as atmospheric components such as humidity,

pressure, dew point, etc. In photovoltaic (PV) systems, power output depends on the

sun’s intensity which is directly dependent on the cloud cover and other meteorological

parameters such as humidity and pressure. The cloud pattern and type in particular

affects the way the sun’s intensity reaches the horizontal surface on ground and

hence cloud shading is one of the major reasons for intermittency and uncertainty in

photovoltaic power output (Katoch et al., 2018a; Bosch et al., 2013; Mueller et al.,

2004; Chow et al., 2011). Solar irradiance has been shown in literature as a good

indicator of PV array power production (El Mghouchi et al., 2016; Duverger et al.,

2017).

Figure 2.8: Illustration of a PV Array Facility. Smart Monitoring Devices (SMDs)
Provide Panel-Level Features (e.g. Current). Weather Station Data Is Used for
Irradiance Prediction Which Is Used to Reconfigure PV Arrays to an Efficient Topology
by Bypassing Panels Producing Lower Power.

In order to ensure the stability of a PV array output, in this work we propose a

weather feature based solar irradiance forecasting strategy which can aid in regulating

40



and planning the operation of a grid integrated solar array. As shown in Fig. 2.8,

we illustrate our cyber-physical approach to a utility scale solar array wherein, we

use smart monitoring devices (SMDs) that can read panel-wise voltage, current and

temperature features. These panel-wise features aid in automating the fault detection

in PV panels and hence, timely repair when needed (Rao et al., 2020). Furthermore,

we illustrate the process of irradiance forecasting using the data from a weather

station. The proposed irradiance forecasting method will serve as an input to a PV

topology reconfiguration setup which aims at maintaining consistent power output as

shown in Fig. 2.9. In this setup, we use SMDs with relay connections that provide

the capability to switch between several PV panel topologies such as Series Parallel,

Total Cross Tied and Bridge Link (Narayanaswamy et al., 2019a). Based on the

predicted irradiance, the PV array can switch between the connection topologies to

maximize the power yield. Hence, automated irradiance forecasting in conjunction

with topology reconfiguration pipeline leads to a smart cyber-physical system approach

for maintaining the power yield of a solar array.

Figure 2.9: Illustration of a PV Weather Station Data Being Used for Irradiance
Prediction Which Is Used to Reconfigure PV Arrays to an Efficient Topology by
Bypassing Panels Producing Lower Power.
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To develop and automate the irradiance forecasting method with robust model

priors, we again employ advanced tools from machine learning aimed for the task of

time-series forecasting. In order to train the chosen machine learning model, we utilize

multivariate meteorological weather feature data (from NSRDB (Sengupta et al., 2018;

Zang et al., 2020; Wang et al., 2020)) in conjunction with Global Horizontal Irradiance

(GHI) data to perform an hour ahead GHI forecasting. However, we show that with

the proposed method, with only 1−day data look back and 30−min data resolution, we

are able to achieve improvements or be at par in prediction performance compared to

the state-of-the-art baselines. Furthermore, we perform a feature ranking experiment

using leave-one out strategy and determine the features that show highest correlation

to the irradiance. Hence, the contributions of this work are threefold:

1. We develop a 1−day look back irradiance forecasting model that can be utilized

for power output prediction based on the weather features.

2. We identify the weather features which are strongly correlated with the irradiance

output by performing a feature ranking experiment.

3. We perform an ablation study based on the data look-back regarding the

performance of four regression models for the task of global horizontal irradiance

forecasting.

2.3.1 Related Work

There are several models that utilize sky-cameras and satellite images for GHI

forecasting (Mueller et al., 2004; Jang et al., 2016; Le Guen and Thome, 2020) and

have achieved improved performance compared to physical models (Dolara et al., 2015).

However, obtaining such images can be expensive due to the capturing instruments

and hence cumbersome in terms of dataset availability and processing. In recent
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years, there has been extensive work on weather based irradiance forecasting using

deep learning particularly for both opaque and non-opaque overcast skies since such

shading conditions cause large fluctuations of irradiance (Katoch et al., 2018a). There

are several artificial neural network (ANN) based methods which use meteorological

parameters to develop GHI based forecasting models (Wang et al., 2012; Pazikadin

et al., 2020). In recent years, long short term memory (LSTM) based architectures

with capability to model past history well due to their hidden states are able to

improve the solar irradiance prediction accuracy and have become commonplace (Sri-

vastava and Lessmann, 2018; Huang et al., 2020; Bhattacharjee and Chowdhury,

2020). Methods also derive direct normal irradiance using the GHI and compare it to

multimodel-ensembles and bootstrap method (Kim et al., 2019). Different variations

of combination architectures that include a simple convolutional neural network (CNN)

with LSTM model have been previously proposed in literature (Shi et al., 2015; Zang

et al., 2020). Attention-based architectures to improve the irradiance forecasting

performance (Sharda et al., 2020) have also been explored.

In the recent years, temporal convolutional network (TCN) has become a state-of-

the-art method for sequence modelling problems (Song and Brown, 2019). This is due

to the fact that for feature extraction as compared to conventional neural network

based architectures such as, ANNs and CNNs, TCNs exhibit longer memory and hence

capture the data history more effectively. Secondly, due to the dilated convolution

usage in TCN, they are also able to extract robust multi-scale temporal features from

the data. Furthermore, in practice TCNs are more stable compared to LSTMs since

the latter are shown to be harder to converge and hence difficult to train (Bai et al.,

2018b). While other methods have utilized TCNs with longer look-backs for irradiance

prediction, to the best of our knowledge, this is the first study that utilizes only 1−day

look-back to history alongwith a dilated convolution based architecture i.e. TCN (Bai
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et al., 2018b) to get mutli scale temporal features to perform short-term irradiance

forecasting. The intuition for using 1−day look-back is to reduce the data storage

and computation cost for the forecasting in a utility scale PV array setting.

2.3.2 Proposed Approach

In this work, the task of GHI forecasting is implemented using a TCN architecture.

Let the input GHI and meteorological feature data which has 9 features be defined

as X = (x1,x2, . . .xT ), xt ∈ RN where N = 10 is the input data dimension and T

represents number of time steps in the input data. Based on our data resolution (1

hour = 2 data points), we choose T = 48 time steps i.e. 1 day worth of data. The

proposed network produces a mapping from the input to the output which is given by,

ŷT+1, ŷT+2, . . . ŷT+h = F(x1,x2, . . .xT ) (2.2)

where ŷi is the estimated irradiance values, h is number of predicted time steps

and F represents a custom TCN model. In our work, we are forecasting 2 time steps

i.e. 1 hour to the future. The network does apply causal constraints on this mapping

i.e. output ŷt+1 only depends on inputs until time step t. The TCN network F

minimizes the loss L(yT+1, yT+2, . . . yT+h,F(x1,x2, . . .xT )) between the actual and

predicted outputs.

A temporal convolutional network architecture used for GHI forecasting is illus-

trated in Fig. 2.11. We customize the TCN architecture such that it is composed of 3

TCN modules wherein each module has dilated causal 1-D convolutional layers. We

implement TCN module such that it is composed of 2 convolution layers with dilation

rate varying up to 2. The primary advantage of TCNs over regular convolutional

networks is the use of dilations. Unlike conventional convolution, dilated convolutions

increase the receptive field size (as shown in Fig. 2.10) based on the dilation factor.
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Increased receptive field can see data much farther in the past and hence extract more

accurate features. This aids in improved and robust mapping of temporal dependencies

and hence richer context. A dilated convolution on element s of our 48 time step

input sequence X is given by,

D(s) =
k−1∑
i=0

f(i)xs−di (2.3)

where X = (x1,x2, . . .xT ) represents the input sequence, d is the dilation factor, f is

the filter, k is the filter size, and s− di are the past input samples.

Figure 2.10: Illustration of Dilated Convolution With Filter Size 3 And Increasing
Dilation Rates a) d = 1, b) d = 2 and c) d = 4.

Causality in TCNs prevents future data leakage and is achieved by choosing non-

negative values of i. The dilated convolution with filter size 3 and increasing dilation

rate is represented in Fig. 2.10. We also experimented with dilation rate 4 however

adding a higher dilation rate than 2 did not improve the performance significantly

specifically when input sequence length is limited to 1 day. Apart from dilated causal

convolutions, as shown in Fig. 2.11, we also use residual connections in the TCN

architecture. The output of the two convolutional layers will be added to the current

input to produce the input for the next module which is given by,

Xj+1 = T (Xj) + Xj (2.4)

where Xj represents the input to the current TCN module, T (Xj) represents the

transformed input and Xj+1 represents the input to the next module. To make sure

that T (Xj) and Xj have same dimensions, we apply an optional linear transformation

to the input. The residual connections aid the model to learn the input distribution
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as well as the transformed versions of the input distribution. Finally, throughout

the TCN architecture, we use Rectified Linear Unit (ReLU) activation function and

the dropout is fixed to 0.01. We limit the architecture to 3 TCN modules to avoid

overfitting to the training data.

Figure 2.11: Illustration of Proposed Temporal Convolutional Architecture With
Three TCN Modules.

2.3.3 Experiments

For GHI forecasting, we utilize the multivariate weather feature data from National

Solar Radiation Database (NSRDB) as our input to predict the target GHI. The

end-to-end GHI forecasting pipeline is illustrated in Fig. 2.12. The first step in the

pipeline after obtaining the weather data is data cleaning and pre-processing. We
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follow standard data preparation steps i.e. imputation wherein we substitute the

missing data values followed by normalizing the data. We then split the dataset into

training, validation and test sets and create 3−D data tensor with batch, time steps

and channels. The proposed TCN model is trained and evaluated on training and

test splits, respectively. The hyperparameter tuning of TCN architecture is performed

using validation split of the data. The final step of the pipeline is data denormalization

which is used to obtain the forecasted GHI values from the predicted test data.

Figure 2.12: Illustration of Proposed Global Horizontal Irradiance Forecasting
Pipeline.

In the following sub-sections, we elaborate on the input data features and how to

pre-process the data to make it suitable for TCN architecture. We also discuss the

baselines and the chosen hyperparameters for the proposed TCN model.
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Data Preprocessing The proposed method is trained and evaluated on 1 year

long data from the NSRDB database which has been collected at a 30-min time

resolution (Sengupta et al., 2018). The data provides several markers for identification

such as, ‘city’, ‘state’, ‘country’, ‘latitude’, ‘longitude’, ‘time zone’, ‘elevation’ and

‘local time zone’. The specified data includes 9 major features which are utilized to

predict the GHI value. The features include ‘dew point’ (temperature below which

water droplets begin to condense), ‘solar zenith angle’ (angle between sun’s rays and

the vertical), ‘cloud type’, ‘surface albedo’ (fraction of the sunlight reflected by the

surface of the Earth), ‘wind speed’, ‘precipitable water’ (total atmospheric water vapor

contained in a vertical column of unit cross-sectional area extending between any

two specified levels), ‘relative humidity’ (a present state of absolute humidity relative

to a maximum humidity given the same temperature), ‘temperature’ and ‘pressure’.

The dataset identifies cloud type into 13 categories including clear, probably clear,

fog, water, super-cooled water, mixed, opaque ice, cirrus, overlapping, overshooting,

unknown, dust and smoke types.

Based on the resolution of data capture, every hour has 2 data points which

amounts to 17520 samples available in the dataset for 365 days in an year. Across all

methods, we perform a train-test split of 70% and 30% and testing data is further

split by 0.5 validation ratio. We perform standard scaling on all the features and the

categorical cloud type data is converted using one hot encoding to be used as an input

feature. The 10−D input dataset including the GHI feature is reshaped to have 48

timesteps in every batch (1 day data) and univariate GHI output is reshaped to have

2 timesteps (1 hr forecast).

Metrics and Hyperparameters We compare with three baseline methods which

involve a 2−layer, 1−D CNN architecture (Ghimire et al., 2019), a 2−layer artifi-
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cial neural network (Wang et al., 2012) and an LSTM architecture with 16 hidden

units (Srivastava and Lessmann, 2018). We chose state-of-the-art neural architectures

used in literature for irradiance forecasting as our baselines. This helps us to determine

whether the specific design choices of dilated convolution and residual connection aid

TCN network over the baselines. We use Adam optimizer with a learning rate of

2e− 3 and a batch size of 32 for training all the neural network based models. We use

mean squared error (MSE) as a loss function to train TCN and all baseline methods.

Finally, we evaluate the performance of all the methods on test set using root mean

squared error (RMSE) and mean absolute error (MAE) along with mean squared

error. The equations for these error metrics are given by,

MSE =
1

n

n∑
i=0

(yit − ŷit)
2 (2.5)

RMSE =

√√√√ 1

n

n∑
i=0

(yit − ŷit)
2 (2.6)

MAE =
1

n

n∑
i=0

(|yit − ŷit|) (2.7)

where n is the number of datapoints in the data batch. All the training of TCN and

baseline methods is performed on NVIDIA GTX 1080.

2.3.4 Performance Evaluation

In this section, we show the evaluation results using the TCN and baseline methods

on the test dataset. As mentioned in Section. 2.3.3, we use the MSE, RMSE and

MAE as the error metrics for performance evaluation. Note that all the methods are

trained on standard scaled data.

It is evident from Table. 2.5, that LSTM and TCN model provides significant

improvement over other methods. With LSTM, the improvement is attributed to
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Method MSE RMSE MAE

Conv 1D 0.16 0.4 0.23

Dense 0.12 0.35 0.18

LSTM 0.0068 0.082 0.052

TCN 0.0056 0.075 0.051

Table 2.5: Error Metrics on Test Data. It Is Evident That TCN Provides the Lowest
Error Compared to the Baselines.

the fact that the hidden state is able to capture the temporal information quite well.

With TCN, the improvements are primarily due to the efficient feature extraction and

rich temporal context attributed to the dilated convolutions. Please note that all the

comparisons in Table. 2.5 use all the input features while training and testing.

Figure 2.13: Error Metrics on Test Data With 3−Day Look-Back.

We also perform an ablation study based on the past look-back length using TCN

and LSTM models. When the models are exposed to longer sequences as shown in

the results plotted in Figs. 2.13 and 2.14, both the methods are able to improve their

relative performance. This can be attributed to the fact that due to longer input

context, the models are able to better capture the inherent patterns in the temporal
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Figure 2.14: Error Metrics on Test Data With 5−Day Look-Back.

data. However, an interesting result is shown in Fig. 2.15 i.e. as the sequence length

of the input data increases, the difference in mean square error between TCN and

LSTM also increases. We infer this behavior to the fact that due to dilations, TCNs

exhibit longer memory and capture data history effectively.

Futhermore, we also performed feature ranking experiment to determine which

features exhibit a strong correlation with GHI using the root mean squared error.

We performed leave one out experiment for all 9 input features except GHI itself to

determine the drop in prediction performance in absence of a certain feature. Based

on careful empirical analysis, Solar Zenith Angle (SZA), Cloud Type and Surface

Albedo represent the feature set to be most strongly correlated with GHI. For these

three features, the RMSE on the test set increased significantly as much as 0.090 in

the absence of Solar Zenith angle, upto 0.087 in the absence of Cloud Type feature

and 0.079 without the Surface Albedo as the feature.
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Figure 2.15: Mean Squared Error for the TCN and LSTM Model as Sequence Length
Increases. It Is Evident That as Number of Days Increase, TCN Performs Consistently
Better Than LSTM Due to Efficient Data History Capture.

2.4 Summary

In this section, we investigated the use of strong model prior in sequence modelling

problems. We considered applications such as, Audio Source Separation, Clinical

Time-series based Diagnosis and Global Horizontal Irradiance Forecasting for PV

Applications. For all the applications, we make similar architectural design choices i.e.

using dilated convolutions. This was motivated by the fact that robust multi-scale

feature extraction achieved by dilated convolutions is able to provide richer context and

give a bird’s eye view of longer temporal histories. Based on the empirical evidence,

we show that robust features obtained using such model priors resulted in better

task performance. In the following chapter, we will investigate how data priors are

significantly effective for image classification based tasks.
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Chapter 3

TASK AND DOMAIN PRIORS FOR DATA EFFICIENT LEARNING

In this chapter, we show how due to varied applicability of deep learning techniques,

data handling for deep learning based methods is not trivial. We argue that data should

be utilized in a more exploratory sense such that we can determine which priors can be

effectively used. We primarily work with task (information from multiple classification

tasks) and domain priors (information from multiple data distributions) and develop

a mechanism which will learn a semantic space from these data priors and will aid in

learning meaningful attributes from the inferred semantic space. The structure of this

space will assist in computing semantic similarities and will then be used to select

powerful priors. This semantic space can give insights in terms of: 1) Finding new

apparent connections which were not comprehended by humans, 2) sharing knowledge

across disparate set of problems. The motivation for this research is also based on

the success of recent model agnostic approaches which exploit semantic relationships

between fine-grained tasks/domains. There are currently successful methods and

complex optimization paradigms like multi-task multi-domain learning (Yang and

Hospedales, 2015) and meta learning (Finn et al., 2017b) which leverage supervised

data for model development for related tasks. These approaches often rely on meta

optimization to make a model robust to systematic task or domain shifts. However,

in practice, the performance of these methods can suffer, when there are no coherent

semantic relationships between the tasks (or domains). In this work, we present

Invenio, an optimization protocol which can account for covariate shifts, can infer

semantic similarities between a given set of tasks and can provide insights into the

complexity of transferring knowledge between different tasks or different domains.
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More specifically, we introduce Invenio as an optimization protocol using a specific

problem setting. In the following chapter, we elaborate on how Invenio can be re-

purposed for different applications and show the algorithm setting for each application

followed by extensive empirical analysis.

3.1 Knowledge Transfer

In a typical generic supervised learning setting, we are given a dataset D =

{(xi, yi)}Ni=1 with inputs x ∈ X and labels y ∈ Y. The goal is to infer a model F

with parameters ϕ that maps from inputs x to the outputs y. The parameters ϕ are

inferred using the following MAP formulation:

arg max
ϕ

log p(ϕ|D) = arg max
ϕ

log p(D|ϕ) + log p(ϕ). (3.1)

In practice, the first term is approximated using the empirical risk
∑

i log p(yi|xi, ϕ),

while the second term is often an appropriately chosen regularizer. While a learning

task can be specified by a dataset D or by the surrogate function F(ϕ), the same task

can also be specified by other datasets. This implies that the complexity of a task

depends on the underlying structure shared among data points, and the variability

that samples exhibit with respect to the shared structure. Formally, the complexity of

a task can be expressed as (Achille et al., 2019b):

C(D) := min
p(y|x)

∑
i

− log p(yi|xi) + K(p), (3.2)

where the minimum is defined over all computable probability distributions p(y|x)

and K(p) denotes the Kolmogorov complexity of p(y|x). By effectively characterizing

the complexity of tasks, one can quantify how well one can transfer between two given

tasks. Instead of solving pairwise adaptation between tasks A and B, our goal is to

learn from K different observed tasks, {Dk ∈ p(D)}, in order to generalize to novel

unseen tasks from the unknown distribution p(D). This setup can be modelled into
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several scenarios i.e. when all datasets use same output space or each dataset has

a different output space. In this section, we present Invenio from the viewpoint

when we are given a set of observed datasets {Dk}Kk=1, where all datasets use the

same output space Y. Since the classification task is the same across datasets (e.g.

MNIST and SVHN for digit recognition), we take into account all parameters θk for

each dataset while quantifying the transferability. In the next section, we provide the

algorithmic description for Invenio.

3.1.1 Proposed Approach

We begin by presenting an overview of meta optimization which serves as a

backbone to Invenio.

Backbone: Meta Optimization Assume we have access to multiple observed

datasets Dobs = {D1, · · · ,DK}. Each of these datasets are characterized by differences

in the marginal feature distribution with identical conditional distributions (domain

shifts). These observed datasets can be used when inferring the parameters ϕ for a

given task from a new dataset D,

arg max
ϕ

log p(ϕ | D,Dobs) (3.3)

= log

∫
Θ

p(ϕ | D, θ)p(θ | Dobs)dθ. (3.4)

As it can be observed, instead of using the observed datasets directly to optimize for

ϕ , we first infer meta-parameters θ, and subsequently adapt ϕ using both θ and D.

More specifically, we need to solve the following two problems:

Meta learning : θ∗ = arg max
θ

log p(θ|Dobs), (3.5)

Adaptation : arg max
ϕ

log p(ϕ|θ∗,D). (3.6)
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In order to solve the problem of generalizing to the same task from the unobserved

dataset, meta learning techniques first split the given set of observed datasets/domains

Dobs into meta-train and meta-test domains, Dtr and Dts, and directly parameterize

ϕ∗ = f(Dtr; θ∗). More importantly, by learning θ such that the corresponding ϕ can

be effective for Dts enables us to define this general bi-level optimization objective:

θ∗ = max
θ

∑
D∈Dts

log p(ϕ|D)

where ϕ = f(Dtr; θ∗). (3.7)

While a broad class of solutions exist for solving (3.7), we focus on optimization-

based inferencing methods such as, MLDG (Li et al., 2017a), meta-SGD (Li et al.,

2017b) and model agnostic meta learning (MAML) (Finn et al., 2017a). In this

approach, instead of learning the parameterization f , we obtain ϕ by fine-tuning the

meta parameters θ using Dts. More specifically, we begin by defining the meta-train

step as follows: We optimize for the meta parameters θ using aggregated losses from

all the K† meta-train domains Dtr:

L(θ) =
1

K†

K†∑
k=1

1

Nk

∑
(x,y)∈Dtr

k

ℓ

(
y,F(x; θ)

)
. (3.8)

Here, ℓ denotes an appropriate loss function, e.g. cross entropy and Nk is the number

of examples in each of the meta-train datasets. This loss function is parameterized

using θ and hence the gradients ∇θL(θ) can be used to update the meta parameters:

θ̂ = θ − α∇θL(θ), (3.9)

where α denotes the step size. In the meta-test step, the estimated parameters

are evaluated on the K‡ = K − K† meta-test domains to virtually measure the

generalization performance. Consequently, the aggregated loss function obtained using
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the updated parameters on the test domains can be written as

G(θ̂) = G(θ − α∇θL(θ)) =
1

K‡

K‡∑
j=1

1

Nj

∑
(x,y)∈Dts

j

ℓ

(
y,F(x; θ̂)

)
. (3.10)

MLDG updates the parameters θ such that the best ϕ for each of the meta-test domains

are only a few gradient descent steps away from θ. Hence, the overall objective is:

arg min
θ
L(θ) + βG(θ − α∇θL(θ)). (3.11)

To intuitively understand this objective, we can perform first-order Taylor expansion

on the second term to obtain

G(θ − α∇θL(θ)) = G(θ)− α∇θL(θ).∇θG(θ), (3.12)

where the expansion is carried out around θ. The meta optimization process amounts

to minimizing the losses on meta-train domains while maximizing the dot product

between parameter sensitivities from meta-train and meta-test domains. When such

a strategy is applied to domains that are significantly dissimilar, the resulting meta-

parameters can be ineffective during generalization. Hence, we propose a structured

meta learning protocol Invenio, which can jointly infer the inherent semantic structure

and build meta parameters that can effectively generalize to unseen domains.

Invenio - A Structured Meta Learning Protocol Learning invariant feature

representations and identifying redundancies across domains to support cross domain

knowledge transfer has been of key research interest, e.g. (Wang and Deng, 2018). We

argue that incorporating such a characterization into meta optimization is critical

to achieving significant performance improvements in applications such as domain

adaptation. We propose Invenio, a structured meta learning protocol, that jointly

infers an implicit distance across same task from different datasets, and at the same

time leverages the similarities while optimizing for the meta parameters.
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In our formulation, we begin by assuming a different set of meta parameters for each

of the domains in Dtr, i.e., y = Fk(x; θk),∀(x, y) ∈ Dtr
k . Consequently, the posterior

on the meta parameters is modeled as a mixture of posteriors from all meta-train

datasets:

p(θ|Dobs) =
K⋃
k=1

p(θk|Dk). (3.13)

p(θ|Dtr) =
K†⋃
k=1

p(θk|Dtr
k ). (3.14)

The inference of parameters for a task from a novel unseen dataset/domain D can be

formulated as

p(ϕ|D,Dtr) = log

∫
Θ

p(ϕ|D, {θk}) p(θ|Dtr). (3.15)

Here, the first term performs fine-tuning from K† different sets of meta parameters,

while the second term is the posterior on θ, described using the mixture in eq. (3.14).

Conceptually, this can be viewed as identifying the mixture probabilities conditioned

on the task from the unseen domain D, such that the most relevant meta parameters

can be used to drive the adaptation. Such an optimization naturally induces a

semantic structure and the mixture associations can be used to construct embeddings

that reveal intricate relationships between domains. To the best of our knowledge,

currently there exists no approach to infer such embeddings from the data, while also

supporting adaptation to task from unseen domains. In the next section, we describe

how Invenio can be used for creating the embeddings between the datasets.

3.1.2 Invenio for Constructing Semantic Space of Domains

Similar to the classical meta learning setup, we also split the set of observed

datasets into meta-train (Dtr) and meta-test (Dts) sets. Following the structured meta

learning formulation in Section 3.1.1, we compute the loss for each of the meta-train
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datasets Dtr
k using the corresponding meta parameters θk as follows:

Lk(θk) =
1

Nk

∑
(x,y)∈Dtr

k

ℓ

(
y,Fk(x; θk)

)
. (3.16)

Here, the term Lk(θk) is the empirical risk for samples from Dk obtained using model

parameters θk. Updating the parameters θk using a gradient descent step can be

expressed as:

θ̂k = θk − α∇θkLk(θk). (3.17)

Since the posterior on meta parameters is modeled as a mixture of posteriors p(θk|Dtr
k ),

performing adaptation requires identifying which meta parameters should we attend

to for generalizing to a meta-test dataset D ∈ Dts. Loosely speaking, this is akin

to estimating assignment probabilities for each of the components in the mixture

p(θ|Dtr), conditioned on the test dataset. Interestingly, as we will show later, this

mixture component association carries crucial information to construct embeddings.

Following the intuition in eqn. 3.12, we propose to quantify the transferability between

a meta-train dataset Dtr
k and a meta-test dataset Dts

j as the dot product between

gradients with respect to the weights θk relative to the losses evaluated on both Dtr
k

and Dts
j . In other words,

ηkj =
∑
∇θkLk(θk).∇θkLj(θk). (3.18)

Here, we measure the similarity between sensitivites of θk with respect to the two

tasks from different distributions, while learning the model ϕj for Dts
j . The summation

in the above expression is over all parameters in the set θk, and the gradient estimates

are obtained by summing over all mini-batches. Note, other similarity metrics and

ranking statistics can be used in lieu of simple dot products; however, we find this

simple metric to be effective in practice. This formulation corroborates with existing

formulations in (Achille et al., 2019a,b) in treating gradients of weights of a neural
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network relative to a task-specific loss to characterize tasks. Given these mixture

component associations, η’s, we can define the objective for the meta-test step as

follows:

G(θ̂k) = G(θk − α∇θkLk(θk)) =
K‡∑
j=1

η̄kj
1

Nj

∑
(x,y)∈Dts

j

ℓ

(
y,Fj(x; θ̂i)

)
. (3.19)

Note, the weights η̄’skj are obtained normalizing η̄kj,∀j to sum to 1. By systematically

controlling, which meta-test task distributions each θk generalizes to, an understanding

of the inherent semantic structure between all observed datasets Dobs can be obtained.

The overall objective for updating each meta-parameter set θk using the structured

meta-optimization can thus be written as,

arg min
θk
Li(θk) + βG(θk − α∇θkLk(θk))

A detailed algorithm of our approach is outlined in Algorithm 1.
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Algorithm 1: Invenio On Multiple Observed Datasets for the Same Task.

Input: Set of observed datasets Dobs

Output: Meta-parameters for the learning task on all observed datasets Dobs

Initialization: Parameters θk for each Fk,∀k ∈ 1, · · · , |Dobs|. Set

hyper-parameters α, β, δ ;

Random Split: Dtr and Dts ← Dobs ;

for iter in niter do

for k in 1 · · ·K† do

Compute loss Lk(θk) and gradients ∇θkLk(θk) using Dtr
k ;

Update θ̂k = θk − α∇θkLk(θk) ;

end

for k in 1 · · ·K† do

for j in 1 · · ·K‡ do

Estimate ηkj =
∑
∇θkLk(θk).∇θkLj(θk) ;

end

Obtain normalized scores η̄ and compute meta-test loss G(θ̂k) in (3.19) ;

Update θk:

θk = θk − δ
∂(Lk(θk) + βG(θk − α∇θkLk(θk))

∂θk
;

end

New random split: Dtr and Dts ← Dobs

end

3.1.3 Experiments

We consider a set of covariate shifts arising from image transformations on Cifar-10

and study the semantic space of different domains (same task). In this experiment,
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we consider 53 different variants of the CIFAR-10 dataset (Krizhevsky and Hinton,

2010), obtained using a broad class of image transformations, while solving the same

task of multi-class classification (10 classes). Here is the complete list of domain

shifts considered: (i) Rotation: 7 variants were generated by rotating the images,

where the degree of rotation was varied between 0 to 90; (ii) Flip: We generated 2

datasets by applying horizontal and vertical flips to the images. These transformations

can be viewed as special cases of Rotation; (iii) Affine: We constructed 14 domains

by applying different affine transformations to images and this was carried out by

varying the settings for scale and shear; (iv) Color : 20 different datasets were created

by manipulating parameters pertinent to color transformations, namely brightness,

saturation, contrast and hue; and (v) Filter : We used blurring and Gaussian smoothing

techniques to create 10 variants of the base domain. While Gaussian smoothing

produces blurring by applying Gaussian function based transformation on image

pixels, the Box Blur filter replaces each pixel by the average of its neighboring pixels.

Intuitively, we expect geometric transformations such as Affine, Rotation and Flip to

be related among themselves and can benefit by shared feature representations. On

the other hand, transformation such as hue, saturation, contrast and brightness are

expected to be strongly related.

Each dataset is comprised of 300 randomly chosen samples from each class and

we use the following architecture to design Fk - Conv(3,20,5,1), ReLU, MaxPool,

Conv(20,50,5,1), ReLU, MaxPool, Linear(2450,500), ReLU, Linear(500,10), ReLU.

The hyperparameter values α, δ and β were set to 1e-4, 1e-3 and 0.1 respectively.

3.1.4 Performance Evaluation

Figure 3.1(a) provides a 2D visualization of the semantic space obtained by applying

truncated SVD on the η matrix S ∈ R53×53 between the set of domains. With two
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Figure 3.1: A Semantic Space of Domains for the Cifar-10 Classification Task. We
Provide a 2D Visualization of the Domain Embeddings Obtained Using Invenio.

domains that are in a close neighborhood, we expect the task of adapting a model

from one case to another to be effective, even with very few examples. As it can

be observed, the structure largely aligns with our hypothesis, i.e., the geometric

transforms such as, rotation, flip and shear are closely related to each other. An

interesting outcome is that the scale transformation does not belong in the same part

of the semantic space as the other geometric transformations. Similar observations can

be made about domains constructed based on color transformations to the original

images. It is evident from Figure. 3.1(a) that the datasets generated by manipulating

hue, saturation and contrast respectively, are closely related to each other. However,

brightness changes manifest as being completely unrelated to other standard color

transformations. As illustrated in Figure 3.1, this may be partly due to the high degree

of brightness change that we applied, which caused the shadows/darker regions to

mask the crucial features like edges. On the other hand the Contrast transformation

makes separation between dark and bright regions more prominent. Finally, the two

filtering transformations that we considered are found to carry shared knowledge

about the images, since both of them produce low-pass variants of the original images.
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3.2 Summary

In this chapter, we studied the effect of data priors for knowledge transfer in image

classification applications. In terms of data priors, we primarily considered task and

domain priors. Domain Priors imply the prior information that can be leveraged from

different data distributions for the same task. Unlike conventional transfer learning,

where the assumption is that all the available data distributions contribute equally such

that model can perform well on the new distribution we proposed a new optimization

paradigm i.e. Invenio, which shows that systematic knowledge transfer is the key.

It was motivated by the literature that extremely disparate distributions have been

shown to lead to inferior generalization on new data. Invenio achieves this systematic

knowledge transfer through a semantic space that is obtained using the gradients

during the model training step. In this chapter, we exhibit that the inferred semantic

space is able to quantify the relationships between different data distributions to show

which distribution is more closely related to the other distribution. In next chapter,

we elaborate on different applications using Invenio paradigm and how the semantic

space weightings are used to achieve improved generalization (on both domains and

tasks).
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Chapter 4

LEVERAGING TASK AND DOMAIN PRIORS FOR COMPUTER VISION

APPLICATIONS

In the last chapter, we showed how data priors are significant and can be used

to map the semantics between different domains. We also presented Invenio, a

generic optimization scheme which incorporates a machinery to infer semantic rela-

tionships between different sets of data. Furthermore, we showed a proof of concept

experiment where we add different kinds of transformations to the data and during

training Invenio is able to cluster the data which has been transformed in a similar

way or shares same semantics. In this chapter, we explore how to leverage the data

priors obtained using Invenio for different computer chapter include test time multi-

source domain adaptation, semantic space of tasks, adaptable transfer learning and

multi-task learning.

4.1 Test Time Multi-Source Domain Adaptation

Multi-source domain adaptation is a sub-category of transfer learning in which

we aim at learning from multiple observed data distributions and use the learnt

parameters on a different unlabelled data distribution. In our application, we are

considering test time adaptation i.e. we assume that the model must generalize to new

data distribution using only the limited number of test samples from that distribution

at test time. Upon the execution of Invenio on the set of observed datasets as shown

in Section. 3.1.1, we can then leverage the inferred semantic structure to better adapt

to unobserved datasets. As shown in Algorithm 2, we adopt a procedure similar to

the meta-test phase (from Algorithm 1) and first compute similarities between the
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test distribution (unobserved) and meta models from all observed datasets. We then

rank the models based on their relevance to the new dataset, as determined by the η

values. The model parameters ϕunobs are then obtained by performing transfer learning

from the most relevant models. We use an ensembling approach which independently

fine-tunes S most-relevant models and obtains the final predictions by aggregating

the ensemble.

Algorithm 2: Generalize to a New Dataset for the Same Task.

Input: Meta parameters from Invenio, θk for all observed datasets Dobs,

Ensemble size S, Unobserved few-shot dataset Dunobs

Output: Ensemble of model parameters ϕ for Dunobs

for k in 1 · · · |Dobs| do

Estimate ηk =
∑
∇θkLk(θk).∇θkLunobs(θk) ;

end

Select the top S tasks from Dobs, based on η ;

Perform transfer learning from θk for the selected tasks to obtain ensemble

{ϕs}s=1···S for Dunobs ;

4.1.1 Experiment: Test Time Multi-Source Domain Adaptation

We demonstrate the effectiveness of Invenio in generalizing to novel unseen

datasets (domains) for the same task. We consider a standard dataset used for domain

generalization - PACS database (Li et al., 2017a), which comprises four different

domains namely photos(P ), art-painting(A), i.e., paintings of objects, cartoons(C)

and sketches(S). Each of these domains have the same 7 classes. We choose two

domains namely, A and S as the observed domains while P and C as the unobserved

domains. To introduce more complex domain shifts, we apply the transformations
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Figure 4.1: We Illustrate an Example Image From the Dog Class for Each of the
Domains in the Observed (Top) And Unobserved (Bottom) Sets.

often encountered in real-world image models such as different illuminating/brightness

conditions(ub), flip(uf ) and rotations (ur). In effect we consider 8 observed domains

defined by the set {A, A + ub, A + uf A + ur, S, S + ub, S + uf , S + ur}, while we

consider 6 unobserved domains given by {C, C + ub, C + ur, P , P + ub, P + ur}.

To capture the complexity of the resulting domain shifts visually, in Figure 4.1,

we show a representative sample of the dog class from each of the observed and

unobserved domains. The transformation functions ub reduces the brightness to 1
8

of its original intensity while uf and ur flips the image in vertical and horizontal

directions, respectively. We report the performance on the test set for each of the

unobserved domains.

Baselines We consider the following baselines: (i) MDL: This is a multi-domain

learning approach wherein a single model is trained by using the training data from all

the observed domains. This common model is then optionally fine tuned on each of the

unobserved domains using their corresponding train and validation data; (ii) MLDG:

A common model is trained through a meta learning algorithm such as MLDG (Li

et al., 2017a). Note, the meta model is fine tuned on each of the unobserved domains

using their corresponding train and validation data. For all experiments, we use

ResNet-18 (He et al., 2016) pretrained on imagenet (Deng et al., 2009a). Across all

experiments, the hyperparameter values α, δ and β were set to 1e-4, 1e-3 and 0.1
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Accuracy

C + ur C + ub P + ur P + uc C P Mean Performance

MTL 21.89 38.57 15.21 42.75 37.33 47.43 33.86

MTL + finetuning 53.97 57.68 52.16 57.49 54.52 58.80 55.77

MLDG + finetuning 80.25 86.01 84.55 85.69 86.01 85.87 84.73

Invenio(S=1) 82.59 85.41 87.78 90.48 85.41 92.69 87.40

Invenio(S=2) 84.30 88.10 91.14 94.01 87.71 94.19 89.91

Table 4.1: Results of Our Proposed Method, Compared Against Several Alternatives,
Evaluated for Test Time Domain Adaptation. We Report Both Task Specific and
Average Performance.

respectively.

In Table 4.1, we compare the performance achieved using baselines to that of

Invenio as described in the Algorithm 2, with S = 1 and S = 2. The proposed

approach provides a strong improvement on the generalization performance with a

boost of more than 5% points on average. We attribute this boost in performance to

exploiting the inherent semantic similarities between the different datasets.

4.2 Invenio for Constructing Semantic Space of Task Distributions

Similar to creating a semantic space for domains, we also consider a scenario where

we modify Invenio to learn the semantic relationships between different tasks. We

define this problem scenario as follows: Given a set of observed datasets {Dk}Kk=1,

wherein each task contains Nk labeled examples, Dk = {(xk
i , y

k
i )}Nk

i=1, and can have

a different output space Yk. Since the actual tasks are different across the datasets

(e.g. Dogs vs Cats and Kingfishers vs Pigeons), the redundancies across tasks are

identified using a common set of parameters (i.e. feature extractor) θkf , while we allow

task-specific parameters (i.e. classifier) θkc as well.
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In this case, we assume each of the observed tasks Dk ∈ Dobs has a separate

label space Yk and Invenio is extended to support this. Inspired by modern transfer

learning approaches, we view a model Fk as a composition of a feature extractor and a

task-specific classifier, i.e., θk = [θfk ; θck]. Note that, our formulation is generic enough

to allow different number of output classes in each of the tasks. While the meta-train

step is identical to the one in Algorithm 1, there are crucial differences in the meta-test

phase. During the computation of the similarity score ηkj, for a meta-test task Dts
j ,

we first construct a model θ̄k = [θfk ;ϕc
j ]. In other words, we emulate a transfer learning

scenario where the classifier layer is redesigned to support the task at hand. Since this

classifier layer is initialized randomly, we also refine that layer (with θfk fixed) using

only Dts
j . We use a similar strategy even while computing the meta-test loss in eqn.

(3.19). The modified algorithm can be found in Algorithm 3.

4.2.1 Experiment: Semantic Space of Tasks

Since Invenio identifies key relationships between tasks, in terms of the ease of

transferring knowledge from a meta-train task to a meta-test task, we believe the η

estimates can be used to construct a meaningful semantic space. In this experiment,

we follow the setup in Task2Vec (Achille et al., 2019a), wherein we consider a suite

binary classification tasks (400 in our case) sampled from four different datasets

namely CUB (Wah et al., 2011), DeepFashion (Liu et al., 2016), iMaterialist (Guo

et al., 2019) and iNaturalist (Van Horn et al., 2018). While the positive class in each

task corresponds to a specific image class from one of the datasets, the negative class

contains images (randomly chosen) from all datasets - (i) CUB200 (Wah et al., 2011):

We use 12 randomly selected classes from the Caltech-UCSD Birds dataset; (ii) Deep
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Algorithm 3: Invenio On Multiple Observed Tasks.

Input: Set of observed datasets Dobs

Output: Meta-parameters for the learning task on all observed datasets Dobs

Initialization: Parameters θk = [θfk ; θck] for each Fk,∀k ∈ 1, · · · , |Dobs|. Set

hyper-parameters α, β, δ ;

Random Split: Dtr and Dts ← Dobs ;

for iter in niter do

for k in 1 · · ·K† do

Compute loss Lk(θk) and gradients ∇θkLk(θk) using Dtr
k ;

Update θ̂k = θk − α∇θkLk(θk) ;

end

for k in 1 · · ·K† do

for j in 1 · · ·K‡ do

For task Dts
j , construct model θ̄k = [θfk , ϕ

c
j] and learn the classifier

ϕc
j using Dts

j ;

Estimate ηkj =
∑
∇θfk
Lk(θfk).∇θfk

Lj(θ
f
k) ;

end

Obtain normalized scores η̄ and compute meta-test loss G(θ̂k) in (3.19) ;

Update θk:

θk = θk − δ
∂(Lk(θk) + βG(θk − α∇θkLk(θk))

∂θk
;

end

New random split: Dtr and Dts ← Dobs

end
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Fashion (Liu et al., 2016): We use 13 randomly selected clothing categories from this

benchmark fashion dataset; (iii) iMaterialist (Guo et al., 2019): We also chose 33

categories from this large-scale fashion database; (iv) iNaturalist (Van Horn et al.,

2018): From this large-scale species detection dataset, we randomly sampled 342

categories from broad taxonomical classes such as Mammalia, Reptilia, Aves etc.

By design, there is partial overlap in tasks between iNaturalist and CUB datasets,

and similarly between iMaterialist and DeepFashion, while simultaneously there is a

clear disconnect between fashion and species datasets. Such a design enables us to

evaluate our approach and reason about the discovered semantic structure between

tasks. Each binary classification problem contains 100 positive samples, while another

100 randomly chosen samples for the negative class. Note that, the architecture and

the training hyper-parameters are same as that from the domain experiment.

Upon execution of Invenio on this large database of binary classification tasks,

we compute the overall task similarity matrix by computing η between every pair

of tasks (treating one of them as the train and other as the test). We perform

truncated singular value decomposition (SVD) on this similarity matrix to infer an

8−dimensional embedding space which characterizes the inferred semantic structure.

We also generated 2 − D embeddings for visualization in Figure 4.2. As it can be

clearly seen, even in the 2D embedding, the disparate tasks (bird type recognition

vs clothing type detection) are well separated. Furthermore, we generated Table 4.2

which shows the results from doing a nearest neighbor search in the semantic space

for different query tasks. We find that our approach produces highly meaningful

relationships between tasks and hence we expect such a semantic space to be beneficial

to understand which models can be re-purposed for which tasks.
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iNaturalist
CUB
Deep Fashion
iMaterialist

Figure 4.2: 2D Visualization of the Semantic Space Obtained Using Invenio On
400 Diverse Binary Classification Tasks.

Query Most Semantically Relevant Tasks

Jeans Shorts, Pants, Jackets, Dress, Kimonos

Kingfisher Oreothlypis, Cuckoo, Hetaerina, Spizella, Zonotrichia

Crow Cormorant, Hyles, Calypte, Blackbird, Latrodectus

Dress Cocktail dresses, Party dresses, Jumpsuits, Jackets, Prom Dresses

Rabdotus Cipangopaludina, Oxidus gracilis, Leccinum scabrum, Fistularia commersonii

Table 4.2: Examples of Nearest Neighbors for Query Tasks in the Semantic Space
Inferred Using Invenio.

4.3 Generalization to New Tasks

In this application, we show that meta parameters learnt using observed tasks can

be used to transfer learn unobserved tasks at test time similar to domain adaptation

paradigm. A crucial benefit of leveraging structure while inferring the task-specific

models in the meta optimization process is that we obtain distinct sets of meta

parameters which are appropriate for generalizing to tasks of different complexity. The
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transfer learning protocol to unobserved tasks in this case is similar to Algorithm 2

with the additional step of adapting the model θ̄k prior to computing η. The proposed

transfer learning protocol is given in detail in Algorithm 4.

Algorithm 4: Generalize to New Tasks.

Input: Meta parameters from Invenio, θk = [θfk , ϕ
c
k] for all observed datasets

Dobs, Ensemble size S, Unobserved dataset Dunobs

Output: Ensemble of model parameters ϕ for Dunobs

for k in 1 · · · |Dobs| do
For task Dj ∈ Dunobs, construct model θk = [θfk , ϕ

c
j] and learn the classifier

ϕc
j using Dj ;

Estimate ηkj =
∑
∇θfk
Lk(θfk).∇θfk

Lj(θ
f
k) ;

end

Select the top S tasks from Dobs, based on η ;

Perform transfer learning from θfk and learn a new classifier ϕc
j for the selected

task to obtain ensemble {ϕs}s=1···S for Dj ∈ Dunobs ;

4.3.1 Experiment: Generalization to New Tasks

We consider the benchmark MiniImagenet dataset (Vinyals et al., 2016) to create 10

observed and 10 unobserved tasks, wherein each task is a 5−way 30−shot classification

task. Note that, the classes in the unobserved/new tasks are different from those in the

observed set, while we allowed overlaps between classes in the observed set. We report

generalization performance on the test set for each of the held-out unobserved tasks.

We consider the following baselines: (i) MTL: This is a multi-task learning approach

wherein a single model is trained by using all observed tasks. This common model is

then optionally fine tuned on each of the unobserved tasks using their corresponding

73



Accuracy

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Mean

MTL 23.5 22 18 18 16.5 25.5 20 25.5 12 23.5 18.75

MTL+finetuning(last layer) 26.5 27 35 28.5 43.5 31 31 39.5 27.5 41.5 33.1

MAML+finetuning 32.5 51.5 44 50.5 59.5 39 47.5 48 52.5 56.5 48.15

ERM 61.5 55 69 58.5 66 50.5 65 61 54.5 79.5 62.05

Invenio (S=1) 56 62 67 64 66.5 57.5 61.5 64 58 76 63.25

Invenio (S=2) 58 67 70 64.5 74.5 60.5 69.5 65 61.5 76 66.65

Table 4.3: Results of Our Proposed Method, Compared Against Several Baselines,
Evaluated for Task Generalization on the Miniimagenet Dataset.

data. Note, that we use task specific classifier layers in this paradigm; (ii) MAML: A

common model is trained through a meta learning algorithm such as MAML (Finn

et al., 2017a). Note, the meta model is fine tuned on each of the unobserved tasks using

their corresponding train and validation data; (iii) ERM: A single model is trained

using single objective function by merging all observed tasks. For all experiments, we

use ResNet-18 (He et al., 2016) pretrained on imagenet (Deng et al., 2009a). Similar to

domain experiments, here the hyperparameter values α, γ and β were set to 1e-4, 1e-3

and 0.1 respectively. From the results in Table 4.3, we find that the Invenio provides

significant performance gains in almost all cases, with an average improvement of

180% in comparison to MAML. This clearly evidences the importance of exploiting

the structure among tasks.

4.4 Multi-task Learning

In a typical multi-task learning pipeline, the goal is to leverage information learned

by one task to aid the training of other tasks (Zhang and Yang, 2021; Ruder, 2017).

The intuition of such multi-task learning strategies is to prefer hypothesis which

explains more than one task by introducing the inductive bias, however, choosing
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which tasks should be trained jointly is still a cumbersome process. While there are

existing multi-task learning strategies which perform joint task modeling (Kendall

et al., 2018; Yu et al., 2020), the primary drawback is that the model maybe unable

to learn a good shared representation due to semantic discrepancies between multiple

observed tasks. Using Invenio, we are able to model these sematic discrepancies and

hence, learn a good shared feature representation.

We define the problem scenario as follows: Given a set of observed tasks {Dk}Kk=1,

wherein each task contains Nk labeled examples, Dk = {(xk
i , y

k
i )}Nk

i=1, and can have

a different output space Yk. The redundancies across tasks are identified using a

shared set of parameters (i.e. feature extractor) θf , while we also allow task-specific

parameters (i.e. classifier) θck. We further introduce task-specific parameters θlk which

are primarily used for semantic space computation in meta-test step. The primary

advantage of having shared feature extractor and separate parameters for semantic

space computation is in terms of scalability. As the number of observed tasks increase,

we are still able to compute the semantic structure with less number of task specific

parameters θlk.

For this scenario, Invenio implementation is shown in Algorithm 5. Inspired by

modern transfer learning approaches, we view a model Fk as a composition of a shared

feature extractor θf and task-specific parameters θk. In our paradigm, we further

characterize task-specific parameters as a combination of task-specific convolutional

layer and a task-specific classifier, i.e., θk = [θlk; θ
c
k]. In this paradigm, we split the

each task Dk into training Dtr
k , validation set Dv

k and test set Dts
k .

In the meta-train step, similar to Algorithm 1, we update task-specific parameters

θk = [θlk; θ
c
k] and save task-specific gradients for shared feature extractor θf . In

meta validation phase, during the computation of the similarity score ηkj, for a

meta-validation set Dv
j , we use a model θ̄k = [θf ; θlk; θ

c
j ] where θf is original shared
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feature extractor, θlk is the updated train task specific parameters and θcj is the

updated validation task’s classifier. We use a similar strategy while computing the

meta-validation loss as in eqn. (3.19), however, the update is applied on task-specific

convolutional parameters i.e θlk. Once all the task-specific parameters are updated, we

update the shared feature extractor using the gradients from meta-train step. Note

that, our formulation is generic enough to allow different number of output classes in

each of the tasks. The modified algorithm can be found in Algorithm 5.

Once Invenio training is concluded, we obtain meta-parameters for each dataset

Dk. To show the performance on test set of the observed task, we use the paradigm as

shown in Algorithm 6. For an observed task’s test set denoted by Dts
j , ∀j ∈ 1, · · · , |D|,

we estimate ηkj and select top S tasks from D, based on η. Finally, we perform transfer

learning from shared feature extractor θf , ensemble {(θlk)s}s=1···S, and θcj for test set.

From the ensemble, one set of parameters will belong to the observed task itself which

were obtained using the training process. The remaining S − 1 set of parameters are

from the most related tasks and hence aid in improving the task performance.

4.4.1 Experiment: Multi task Learning

We consider the benchmark CelebA dataset (Liu et al., 2018) to create 9 observed

binary classification tasks. Note that, each task is created by selecting an attribute

from the 40 possible attributes from the CelebA dataset. Similar to other multi-

task learning baselines such as (Fifty et al., 2021), we choose 5 o Clock Shadow,

Black Hair, Blond Hair, Brown Hair, Goatee, Mustache, No Beard, Wearing Hat

as our task attributes for fair comparison. We utilize the provided splits for training,

validation and test sets. We report the task specific and total loss performance on the

held-out test set for each of the observed tasks.

We consider the following baselines: MTL: This is a multi-task learning approach
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wherein a single model is trained by using all observed tasks. (ii) MAML: A common

model is trained through a meta learning algorithm such as MAML (Finn et al.,

2017a). (iii) TAG: In this method, authors use inter-task affinity by training all

tasks together in a single multi-task network and quantifying the effect to which

one task’s gradient update would affect another task’s loss (Fifty et al., 2021). (iv)

FLUTE: In this method, a universal template is created which is composed of shared

model parameters along with task-specific batch normalization layers. The shared

model is trained using all observed tasks, whereas scaled and shifted task-specific

batch norm layers are trained using corresponding task. For all experiments, we use

ResNet-18 (He et al., 2016) pretrained on imagenet (Deng et al., 2009a). Similar to

domain experiments, here the hyperparameter values α, γ and β were set to 1e-4, 1e-3

and 0.1, respectively. From the results in Table 4.4, we find that the Invenio provides

significant performance gains in all cases.
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Algorithm 5: Invenio For Multitask Learning.

Input: Set of datasets D

Output: Meta-parameters for the test set of all datasets D

Initialization: Parameters θf shared; θk = [θlk; θck] for each

Fk,∀k ∈ 1, · · · , |D|. Set hyper-parameters α, β, δ ;

Split each dataset to train and validation set: Dtr and Dv ← Dk ;

for iter in niter do

for k in 1 · · ·K do

Compute loss Lk(θf ; θk) and gradients ∇θf ;θkLk(θf ; θk) using Dtr
k ;

Update θ̂k = θk − α∇θkLk(θf ; θk) ;

end

for k in 1 · · ·K do

for j in 1 · · ·K do

For task Dv
j , ;

Estimate ηkj =
∑
∇θlk
Lk(θf ; θlk, θ

c
k).∇θlk

Lj(θ
f ; θlk, θ

c
j) ;

end

Obtain normalized scores η̄ and compute meta-validation loss G(θ̂lk) ;

Update θlk:

θlk = θlk − δ
∂(Lk(θf ; θk) + βG(θlk − α∇θlk

Lk(θf ; θk))

∂θlk
;

end

Update θ̂f = θf − α∇θfLk(θf ; θk) ;

end
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Loss

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Total Loss

MTL 6.91 11.23 4.31 12.51 2.57 3.01 4.59 4.81 0.64 50.57

MAML 6.78 11 4.13 12.12 2.87 3.1 4.32 4.54 0.84 49.7

TAG 6.39 11.08 4.07 12.20 2.63 2.99 4.79 4.62 0.722 49.49

FLUTE 6.45 10.23 3.67 13.46 1.94 2.98 3.99 4.23 1.02 47.97

Invenio (S=2) 1.83 2.27 2.64 2.38 0.75 0.78 0.85 2.12 0.8 14.42

Table 4.4: Results of Our Proposed Method, Compared Against Several Baselines,
Evaluated Multi-Task Learning on the CelebA Dataset.

Algorithm 6: Generalize to Test Data.

Input: Meta parameters from Invenio, θf ; θk = [θlk, θ
c
k] for all datasets D,

Ensemble size S, Test set from one of the dataset Dts
j

Output: Ensemble of model parameters for Dts
j

for k in 1 · · · |D| do

For task Dts
j , Estimate ηkj =

∑
∇θlk
Lk(θf ; θlk, θ

c
k).∇θlk

Lj(θ
f ; θlk, θ

c
j) ;

end

Select the top S tasks from D, based on η ;

Perform transfer learning from θf , ensemble {(θlk)s}s=1···S, θcj for Dts
j ;

4.5 Summary

In this chapter, we showcase how Invenio is a generic optimization paradigm

and with small modifications can be re-purposed for several different computer vision

applications. We utilize Invenio for applications such as test time domain adapta-

tion, constructing semantic space of tasks, generalizing to new tasks and multi-task

learning. We show how Invenio exploits the task and domain priors and achieves the

performance improvements on several benchmarks. In next chapter, we explore data

capture mechanism as a prior and how that prior can be effectively utilized for energy
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efficient object tracking.
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Chapter 5

DATA SELECTION MECHANISM AS A PRIOR

5.1 Introduction

In this chapter, we introduce the data selection mechanism as a prior. Similar

to model, task and domain priors, we empirically identify whether data selection

mechanism has a significant effect on the final task performance. Primarily we

investigate data capture in the context of video object tracking. Object tracking is one

of the most ubiquitous applications for computer vision with a rich history in robotics,

surveillance, and autonomous vehicles. In recent years, deep learning-based neural

networks have accelerated progress in object tracking to state-of-the-art performance.

However along with advanced architectural design, the vastly available high resolution

video data is key for significant improvements in the tracking performance. Note that,

despite the huge success, recent research has turned to embedded or energy-efficient

object tracking where system constraints on power and latency are critical for extended

deployment in the wild. In this work, we develop a mechanism termed as adaptive

subsampling which systematically captures relevant video data such that it is enough

to maintain object tracking task performance while also achieving energy efficiency by

reading less redundant data during data capture. We achieve adaptive subsampling

by two specific strategies 1) Adaptive subsampling using frame intensity 2) Adaptive

Subsampling using policy gradient method. The two strategies are discussed in further

detail in following sections.
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5.2 Energy Efficient Video Object Tracking

5.2.1 Introduction

Imaging sensors are one of the major sources of energy expenditure for embedded

vision platforms, particularly for continuous object tracking. The analog readout

circuitry of image sensors can consume 50-70% of the total energy in most modern

mobile system designs (LiKamWa et al., 2016; Buckler et al., 2017). Furthermore,

always-on vision cameras which duty cycle their sensing to save battery life are used

in several applications (Naderiparizi et al., 2017; Sadasivam et al., 2017; Yi et al.,

2020). Finally, surveillance cameras employ uninterrupted data capture and hence

need to be energy efficient for prolonging battery life.

To address inefficient energy expenditure in the processing of real-time video

data, one important mechanism for image sensors is adaptive subsampling. Adaptive

subsampling is the selective readout of regions of interest (ROIs) in sequential frame

capture while turning off other pixels in the image. Cameras in the market that

can read out selective ROIs yield the resulting benefits: reduced image quantization,

faster bandwidth and improved energy efficiency. Energy per pixel and spatiotemporal

resolution of the streaming images are inversely proportional, i.e. lower frame rates

and image resolutions consume less energy (LiKamWa et al., 2013).

ROIs are particularly useful for object tracking, where only a small ROI around a

moving object is necessary for tasks including surveillance and autonomous driving.

The problem of adaptive subsampling is to determine this correct ROI. In this work, we

consider the issue of performing robust object tracking for an image sensor performing

adaptive ROI subsampling. This means that frames of the image sensor will be

subsampled to only a small ROI rather than a full visual frame while sensing, and the

algorithm needs to perform tracking with this limited information. To this end, we
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propose two adaptive subsampling strategies achieved using frame intensity as well as

using a policy gradient method respectively. Our primary contributions in this area

are as follows:

• We develop a frame intensity based adaptive subsampling technique which devoid

of a neural network, is able to perform energy efficient object detection at test

time.

• We develop a policy gradient method for learning image subsampling patterns

which aid in ROI prediction and can be simultaneously integrated with ROI-

capable cameras to improve image sensor energy efficiency. We propose a loss

function based on target location and image subsampling which captures the

dissimilarities between network predictions and corresponding target labels.

• We also show the efficacy of our network in the context of energy optimization

by reporting potential energy savings and computational efficiency at test time.

The proposed techniques are evaluated on a variety of datasets and against con-

ventional state-of-the-art object trackers. Note that we are developing it as a proof

of concept to show that detection based trackers can be utilized to maintain energy

efficiency by tracking with subsampling. We also compare against a number of baseline

algorithms developed in (Iqbal et al., 2021) coupled with Kalman filtering to endow

them with predictive capability. Our method outperforms both state-of-the-art and

baselines in terms of Area under the Receiver Operating characteristic curve (AUC)

and Mean Average Precision (mAP) (Bradley, 1997) and achieves significant energy

savings owing to the adaptive subsampling component.
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5.2.2 Related Work

Object Detection and Tracking There has been extensive work in the field of

object detection and tracking in recent years. Due to the advent of deep learning,

several deep learning trackers have been proposed which give significant performance

improvements (Fan and Ling, 2017; Nam and Han, 2016; Song et al., 2018b; Wang

et al., 2015) compared to correlation filter based tracking (Bolme et al., 2010; Danelljan

et al., 2015; Henriques et al., 2014; Danelljan et al., 2016; Valmadre et al., 2017) and

Kalman filter based tracking (Li et al., 2010; Black et al., 2002; Marcenaro et al.,

2002; Kim and Jeon, 2014). However, a major drawback of these methods is in terms

of computational complexity leading to issues when they are applied at very small

frames per second (FPS). This has led to a series of deep Siamese based trackers and

its variants (Tao et al., 2016; He et al., 2018; Wang et al., 2019a,b; Guo et al., 2017;

Bertinetto et al., 2016; Zhang and Peng, 2019; Li et al., 2019, 2018; Zhu et al., 2018).

Several recent works also utilize regression based target tracking methods (Bertinetto

et al., 2016; Held et al., 2016). However, some of these methods are unable to utilize

long-term temporal information efficiently. Recently, there has been a surge in utiliza-

tion of recurrent neural networks for target tracking (Kahou et al., 2017; Ning et al.,

2017; Gan et al., 2015). In (Ning et al., 2017), authors utilize the regression capability

of Long Short Term Memory (LSTM) to predict the target location. A similar model

was proposed in (Gan et al., 2015), wherein authors utilized a recurrent neural network

to predict top-left and bottom-right corners of a bounding box. However this method

utilizes localization error as the final cost function unlike (Kahou et al., 2017), wherein

a classification error averaged over all the frames is used. The object tracking methods

most close to ours include (Zhang et al., 2017; Sun et al., 2020) and (Mnih et al.,

2014) in which authors utilize the CNNs to extract image information and the RNN
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and RL techniques are used to perform visual target tracking. In (Li et al., 2021),

the authors introduce a new benchmark and baseline for predictive visual tracking

that accounts for both performance and latency. While several authors have also

proposed RL algorithm based video tracking solutions (Choi et al., 2017; Supancic III

and Ramanan, 2017; Mnih et al., 2016; Yun et al., 2017; Huang et al., 2017a; Chen

et al., 2018; Dunnhofer et al., 2019), none of them to the best of our knowledge are

developed and analysed keeping in mind the energy efficiency needed for image sensing

in embedded systems.

The recent boom in the autonomous and mobile platforms has triggered a need

for a major design choice to make the object detection and tracking pipeline more

energy efficient. In (Casares and Velipasalar, 2011), the authors present an adaptive

methodology wherein the embedded camera state duration is determined based on

the speed of the tracked object. However, this method is not able to work well with

strongly shadowed videos. In (Apicharttrisorn et al., 2019), the authors propose a

software framework titled MARLIN which enables content driven real time tracking

by switching between deep learning and light-weight techniques. But the method fails

in instances when the neural network based tracker is not triggered in time.

ROI Adaptive Subsampling In the majority of embedded and mobile platforms,

image sensing is one of the major sources of energy expenditure which leads to

inefficient battery usage. In (LiKamWa et al., 2013), authors show how image

sensor energy expenditure has an inversely proportional response to changes in pixel

resolution and frame rate. Several algorithms for adaptive spatial subsampling have

been proposed in the context of image and video compression (Lin and Dong, 2006;

Dong and Ye, 2013; Belfor et al., 1994). However, we are concerned with saving energy

while performing object detection on real-time video, and thus cannot rely on video
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compression algorithms which rely on the full video being captured first. To address

this problem, we develop a content driven adaptive subsampling strategy wherein the

algorithm learns to read specific regions-of-interest (ROIs) to save energy using spatial

subsampling. In a similar vein, the authors have developed an adaptive subsampling

strategy in (Iqbal et al., 2020) which utilizes a YOLO network for object detection

and a Kalman filter for ROI prediction. In our proposed intensity based adaptive

subsampling method (Katoch et al., 2019a), we propose an algorithm which detects

ROIs by employing the objectness feature. However, the reference frame subsampling

mask is used for ROI detection in consecutive frames. This fails to account for changes

in the appearance of the object, which leads to erroneous tracking at least until the

next reference frame comes in. Keeping this erroneous tracking into consideration, we

have investigated and implemented another adaptive subsampling method that has

greater predictive power. We employ an LSTM network as our agent in the proposed

policy gradient method to make our future location predictions. The LSTM network

benefits from past temporal information encoded in its hidden units and is able to

anticipate future trajectories with a great degree of accuracy. In the following sections,

we elaborate on both intensity based adaptive subsampling and policy gradient based

adaptive subsampling in detail.

5.2.3 Proposed Approach: Frame Intensity based Adaptive Subsampling

In this method, to enable energy-efficient video object detection, we propose an

adaptive algorithm to subsample video frames that uses a metric for objectness (Alexe

et al., 2010, 2012) and intensity-based segmentation. This algorithm utilizes semantic

information from a previous key frame in the video to determine subsampling patterns

for future frames. We show that this adaptive algorithm achieves better trade-offs

in energy savings to object detection accuracy as compared to naive subsampling
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methods of uniform and random sampling.

Algorithm Description In this section, we present our frame intensity based

adaptive subsampling algorithm for video object detection and tracking. We require

that our algorithm operates at run-time by determining the future subsampling

patterns based only on prior frames (i.e. causal system) so that it can work on

incoming video frames. This algorithm is simple conceptually in nature as we wanted

to reduce the amount of overhead computation it takes to allow for adaptive sampling.

However, we show that this method achieves only a slight degradation in object

detection and tracking performance while saving energy. The whole algorithm is

summarized in Figure 5.1.

One constraint we placed on our method is that it had to work on embedded

platforms that have limited resources. This included the assumption that there is no

GPU on the platform, and thus no way to retrain the object detection neural network

to adapt to the subsampling pattern. Of course doing so could yield even better object

detection accuracy for the same energy savings. The advantage of this method is that

it is immediately deployable to existing systems such as UAVs and robotic platforms

and requires no training or GPUs on-board.

Objectness as semantic information The first key question we consider is

how to extract semantic information from previous frame(s). While there are sev-

eral techniques that could be used as generic visual features including CNN fea-

tures (Sharif Razavian et al., 2014), we utilize an algorithm that trains a measure for

objectness for a given image (Alexe et al., 2010, 2012). This makes our algorithm

highly tuned for object detection, and does not require an additional neural network to

be stored on the embedded device to extract visual features. This algorithm quantifies
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Figure 5.1: Flowchart Explaining the Intensity Based Adaptive Video Subsampling
Algorithm.

how likely it is for an image window to cover an object of any class. It does so by

considering four image cues: multi-scale saliency, color contrast, edge density and

straddleness (Alexe et al., 2010, 2012). Combining different image windows, the

algorithm produces an objectness map that can be seen in Figure 5.2. In this figure,

we show how the objectness map still can identify primary objects even when operating

on different types of subsampled imagery. We will utilize these objectness maps to

help determine our spatial subsampling in the video.

Adaptive Subsampling Algorithm We now present our adaptive algorithm, which

couples this objectness map with intensity changes in the video to help determine
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Figure 5.2: The First Row Shows the Original Image and Its Resulting Objectness
Map. The Next Three Rows Show the Same Process for Three Different Forms of
Image Subsampling on the Original Image: Random Pixelation, Checkerboard Mask,
and Adaptive Video Sampling.

a spatial sampling pattern. Let I(x, y, t) represent a video where (x, y) represents

the locations of the pixels and t represents the frame index in time. Let N1 and N2

represent number of rows and columns in a given frame, respectively. Consequently,

the number of pixels in a given frame is given by P = N1N2 for a gray-scale image. Let

Mi for 1 < i < T represent the objectness-maps as described above, and T represents

total number of frames in the video.

The algorithm begins by considering the importance map of the first frame (refer-

ence frame) M1. We calculate a histogram of the importance map, and based on this

histogram and an empirically-chosen threshold, we convert the gray-scale objectness

map to a binary mask B1. This threshold is called the objectness threshold, and is
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determined either by empirically-chosen values (γ) or by Otsu’s method (δ) (Otsu,

1979).

The object blobs in the binary mask are labelled based on their neighboring pixel

connections. Once these object blobs in the binary mask are identified, we compute

the area of these blobs and only select objects with area greater than a threshold of

2000 pixels to obtain an updated binary mask Bu
1 . This binary mask is used for our

subsampling for the next consecutive frame.

In other words, the updated binary image is the final mask which is used to turn

off pixels in the reference frame. We utilize this mask to subsample the consecutive

frames in the video. However, the underlying assumption is that the objects in the

scene do not move significantly, so that the mask is still relevant in the subsampling.

To check the continued validity of this assumption, we calculate the absolute mean

intensity difference between the reference frame and the current subsampled frame, as

shown in (5.1): ∣∣∣∣∣∣
∑
(x,y)

I(x, y, t + j)−
∑
(x,y)

I(x, y, t + k)

∣∣∣∣∣∣ ≤ τ, (5.1)

where I(x, y, t + j) represents reference frame and I(x, y, t + k) represents the current

frame. Note that the choice of the Frame Intensity threshold τ is critical for determining

whether to update the reference frame and whether the binary mask may overlap

only partially with objects in the reference image. A smaller threshold means less

energy-savings as more reference frames need to be fully sampled, but the resulting

subsampling will more accurately track object motion.

To further validate this object motion assumption, we use another constraint

obtained using optical flow between two frames. We use Lucas-Kanade optical

flow (Lucas and Kanade, 1981), and if the mean magnitude of the optical flow is

less than a fixed threshold ϕ, we use the same subsampling binary mask as the
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previous frame. If the constraint is not satisfied, we capture a new reference frame. In

Section 5.2.4, we compare the performance using the frame intensity threshold versus

the optical flow magnitude threshold.

5.2.4 Experiments

Dataset For the video subsampling algorithm, we use the ILSVRC2015 Image Vid

Dataset (Deng et al., 2009b) which has 555 video snippets with 30 classes. For our

experiments, we consider videos of 6 classes namely, Bird, WaterCraft, Car, Dog,

Horse and Train. We performed object detection using an implementation of Faster

RCNN, an object classification algorithm (Yang et al., 2017). The accepted metric of

object detection, mean Average Precision (mAP), per classification is obtained based

on the bounding boxes from the video frames.

We compare four types of subsampling: (1) random subsampling where each pixel

has a probability α of being turned off, (2) our adaptive sampling algorithm using

Otsu’s method for objectness threshold (δ) and values of 0.1, 0.3, 0.5 for the frame

intensity threshold (τ), (3) adaptive subsampling algorithm with Otsu’s method for

objectness threshold (δ) and an optical flow magnitude threshold (ϕ) with values

0.0015, 0.005, 0.015, and (4) Adaptive subsampling with the tuned parameters of 0.15

for the objectness threshold (γ) and 0.1 for the frame intensity threshold. These

parameters were tuned on separate videos from the dataset not included in the test

set we consider.

Energy modeling For our energy modeling, we assume that the proportion of pixels

that are turned off are proportional to the savings in readout energy (LiKamWa et al.,

2013). As described in Section 3, τ (i.e. the frame intensity threshold) is one of the

most important parameters to control the energy savings while keeping the accuracy of
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object detection at almost the same level. If the optimization constraint is too strong

(i.e τ is really low), it will lead to subsampling calculation of every consecutive frame

which will result in high computation time. It will make the algorithm inefficient

for use in camera sensors. However, if this threshold τ is very big, it can lead to

conditions where the subsampling strategy neglects the changes due to object motion.

The choice of ϕ (i.e. Flow Magnitude threshold) can be justified similarly.

5.2.5 Performance Evaluation

Qualitative Results In Fig. 5.3, we show some visuals of detected objects from

adaptive subsampling strategy. For the shown result, a frame is chosen from the Car

video and bounding box generated on each subsampled frame is shown. It is evident

that even after turning off a large number of pixels, Faster RCNN is able to detect

the object in most cases. These benefits coupled with energy savings make it a decent

approach for video subsampling.

Figure 5.3: The First Column Shows the Object Detection for Three Different Frame
Intensity Thresholds (τ = 0.1, 0.3 and 0.5). The Next Column Shows the Same Process
for Three Different Optical Flow Magnitude Thresholds (ϕ = (1.5, 5.0, 15.0)× 10−3).
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Subsampling

Strategies

Fully

Sampled

Random

Subsampling

(α)

Adaptive

Subsampling

(δ + τ)

Adaptive

Subsampling

(ϕ (10−3))

Adaptive

Subsampling

(γ + τ)

0.15 0.25 0.35 0.1 0.3 0.5 1.5 5.0 15.0 0.15 + 0.1

mAP 55.5 15.4 5.9 0.9 40.1 37 38 41.8 41.7 28.6 50.1

Table 5.1: mAP Scores for Different Subsampling Strategies.

Quantitative Results To test whether the proposed subsampling strategy achieves

the desired energy savings along with the computer vision task accuracy, we show the

results of mean Average Precision (mAP) scores of fully sampled, randomly subsampled

and adaptive subsampled videos presented in Table. 5.1. It is evident that random

subsampling results in the worst mAP scores compared to adaptive subsampling

strategy. As mentioned in Section. 5.2.3, in adaptive subsampling strategy, a binary

mask is used to obtain the subsampled frames. This binary mask is obtained using

the objectness threshold (δ) obtained from Otsu’s method. As shown in Table. 5.1,

the empirical objectness threshold (γ) resulted in better mAP score compared to

Otsu’s objectness threshold. Among the two thresholding methods i.e. optical flow

magnitude and frame intensity, the frame intensity threshold performed slightly better

with an empirically-chosen objectness threshold which gives a mAP score of 50.1%

which is closest to fully sampled video mAP score of 55.5%.

In Table 5.2, we show the percentage of pixels turned off for each subsampling

strategy. Note that the strategy that received the best mAP score (Adaptive Sub-

sampling with objectness threshold (δ) and frame intensity threshold (τ)) saves 18

- 67% of energy. As mentioned in 5.2.2, this adaptive subsampling method doesn’t

account for changes in the appearance of the object, which leads to erroneous tracking

at least until the next reference frame comes in. Consequently, in the next section,

we propose the policy gradient based adaptive sampling approach which uses neural
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Subsampling

Strategies

Random

Subsampling

(α)

Adaptive

Subsampling

(δ+ τ)

Adaptive

Subsampling

(ϕ (10−3))

Adaptive

Subsampling

(γ + τ)

0.15 0.25 0.35 0.1 0.3 0.5 1.5 5.0 15.0 0.15 + 0.1

Bird 14.16 22.75 30.80 87.43 86.64 86.43 92.23 92.24 92.22 54.04

Watercraft 13.26 22.32 31.62 79.80 79.91 80.09 83.15 83.01 88.30 50.04

Dog 17.71 29.39 40.59 11.83 11.87 11.86 68.76 68.76 68.76 18.44

Car 18.13 30.66 42.86 30.42 30.10 30.18 90.44 90.72 88.94 67.87

Horse 21.21 34.96 48.01 25.82 26.26 26.46 75.65 75.65 75.90 38.85

Train 22.24 29.60 37.41 21.05 21.02 21.07 71.19 71.19 71.19 55.97

Table 5.2: Energy Efficiency in Terms of Turned off Pixel Percentage in a Video for
Different Subsampling Strategies.

network based method to achieve energy efficient object tracking.

5.2.6 Proposed Approach: Adaptive Subsampling using Policy Gradient Method

Policy gradient based adaptive subsampling method is similar to predictive object

tracking (Li et al., 2021) where an object’s future position is inferred from previous

frames. While there has been an ample amount of research on object tracking,

predictive tracking with adaptive subsampling is less studied in the literature. Previous

methods such as (Bertinetto et al., 2016; Kahou et al., 2017; Zhang et al., 2017; Mnih

et al., 2014) utilize deep neural networks such as RNNs and LSTMs to perform

regression-based location prediction for predictive object tracking. However, all these

methods rely on fully sensed frames to perform predictive tracking, and do not robustly

track objects while images are being subsampled into ROIs.

We show that existing state-of-the-art trackers such as DIMP (Bhat et al., 2019)

and ATOM (Danelljan et al., 2019) which adaptively generate the search region

(in next frame) by roughly extending the tracking bounding box in current frame,

degrade in performance when operating on subsampled images. Thus, we consider
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the objective of jointly performing adaptive subsampling of the image while doing

predictive object tracking. This allows us to tradeoff between energy savings via

adaptive subsampling and object tracking performance. Most existing ROI selection

techniques are performed offline and without the image sensor in the loop. In contrast,

our method considers a programmable sensor in the loop which is reconfigured by

the network-determined ROI, and we design an algorithmic pipeline tailored to such

programmable sensors.

While tracking by detection is not a recent methodology, the novelty is that in

particular, we propose a neural network architecture with predictive capabilities to

enable preemptive ROI sampling based on the estimated object trajectory. We utilize

the tiny YOLO network for feature representation (Redmon et al., 2016) followed by

an LSTM network (Hochreiter and Schmidhuber, 1997) for the adaptive subsampling

prediction and tracking. Novel to our design is the use of reinforcement learning to

train the network, specifically the REINFORCE algorithm (Williams, 1992; Mnih

et al., 2014), also known as the Monte Carlo Policy Differentiation, to converge to the

optimal tracking and subsampling policy.

Algorithm Description The proposed algorithm implements a dual architecture

to perform predictive object tracking and subsampling. Subsampling refers to the

selection of only the region of interest (ROI) in the image based on the computer

vision task. The algorithm exploits a policy gradient (Mnih et al., 2014) strategy

with a cost based on target object location and subsampling pattern (explained in

Section. 5.2.7) to guide the model training. The final objective is to obtain a trained

network with predictive ROI and subsampling mask capabilities.

The key idea of keyframing is a critical design choice in our subsampling and

tracking pipeline. Keyframing implies that visual feature extraction on fully sampled
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frames in the video occurs at only specific intervals termed as keyframing interval. The

underlying premise is that for the non keyframes, the image sensor samples specific

pixels based on the ROI predicted by the network architecture for maximal energy effi-

ciency. Keyframing has been used extensively in video compression algorithms (Le Gall,

1991; Sullivan et al., 2012) to reduce image storage. In Section 5.2.8 we present the

tracking performance of our architecture for different keyframing intervals.

Network Architecture The dual architecture is composed of (1) a pre-trained Tiny

YOLO network to extract feature representations from fully sampled and subsampled

frames (Redmon et al., 2016), and (2) an LSTM layer for ROI and subsampling

prediction. This dual architecture is inspired from (Zhang et al., 2017) wherein the

authors have an observation network to obtain feature information followed by the

recurrent network used for location regression. However, to the best of our knowledge,

ours is the first work which focuses on developing subsampling masks using regression

to perform object detection. The two kinds of subsampling masks we use for guiding

the training include 1. ROI based subsampling mask and 2. subsampling mask created

by using static grids of 7× 7 on a video frame and turning them on or off depending

on whether a portion of ground truth object lies in the grid or not (coarse-grained

ROI).

In Figure 5.4, we show the network architecture and inference pipeline for a

trained network. For the incoming frames, visual feature extraction is conducted

using Tiny YOLO, a state-of-the-art real-time object detector which has been used

extensively for tracking applications. Tiny YOLO was chosen based on our goal

of implementing the proposed pipeline on hardware in future. We will use Tiny

YOLO/YOLO interchangeably throughout the section. The extracted features are

regressed using an LSTM to predict the bounding box and a coarse-grained ROI
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Figure 5.4: A Pretrained Tiny YOLO Extracts Feature Maps From the Images
Which Is Then Fed to the LSTM. The LSTM Aims to Learn the Optimal Sensor Mask
Generation Strategy Based on Joint Bounding Box and Coarse-Grained Subsampling
Pattern Prediction and Uses the Mask to Obtain Subsampled Frame.

(subsampling matrix) for the next frame. At the next time step, a non-keyframe is

subsampled according to the location information/ coarse-grained ROI predicted by

the LSTM leading to pixels outside of the ROI getting switched off. The tiny YOLO

extracts features from this subsampled image which are then passed through the

LSTM along with the updated hidden state in which past bounding box and coarse

ROI information remains embedded. The prediction phase persists until the next

keyframe comes in, at which point the LSTM network once again gets access to the

fully sampled image features.

Network Training via Reinforcement Learning The proposed architecture

leverages the YOLO based deep learning pipeline for extracting improved quality visual

features. Furthermore, it employs state-of-the-art LSTM model to predict the object

location. However since our application at the inference requires sequential subsampled
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Figure 5.5: At the Training Time, Tiny YOLO Extracts Feature Vector From
Incoming Image Frames. Ground Truth Object Location and Coarse Subsampling
Mask Corresponding to Keyframe Are Fed Explicity to An LSTM. LSTM Operates
on These Inputs and Previous Hidden States and Outputs the Hidden State for the
Consecutive Time Step. ROI and Subsampling Predictions Are Extracted From This
Output Hidden State.

frame capture for longer durations, we train our network using REINFORCE algorithm

to improve the tracking and subsampling performance in the long run. We formulate

the problem of joint tracking and adaptive subsampling as a reinforcement learning task

and utilize the REINFORCE algorithm (Williams, 1992; Mnih et al., 2014) to perform

the prediction step. This REINFORCE algorithm based training procedure is depicted

in Figure 5.5. As presented in Figure 5.5, the fully sampled frames i.e. keyframe’s

feature vectors are concatenated with groundtruth location and subsampling mask

for the consecutive frame. Unlike keyframes, non-keyframe feature vectors are not

provided with any informative ground truth bounding box and subsampling mask in

order to guide the network towards accurate target estimation.
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In the terms of reinforcement learning for this framework, the LSTM plays the

role of the RL agent, the environment is visual world sensed through the image sensor,

and the state is the current image frame (which may or may not be subsampled).

The policy function is defined by the network weights (r = {ro, rrc}) where ro are the

YOLO network parameters and rrc represents the LSTM parameters. The control set

U represents all possible bounding boxes and subsampling masks that an agent can

choose to minimize the cost. Thus the network’s goal is to learn a policy function

µ(uk | z1:k; r) characterized by network parameters r to determine a uk ∈ U (i.e.

a bounding box and subsampling mask pair). This function depends on the past

state-control trajectories up to time step k,

z1:k = {(i0, u0), (i1, u1), . . . , (ik, uk)}

where u ∈ U denotes the predicted bounding box and subsampling mask and i denotes

the image frame/state for a given time step. The LSTM encodes the past information

z1:k in its hidden states encoded by rrc. Hence, the policy function relies on past

interactions between the agent and the environment.

The policy function induces a probability distribution p over all possible state-

control trajectories zk, and the optimization problem is restricted to a parametrized

subset P̃z ⊂ Pz of distributions and can be reduced to p(z; r) where Pz represents a

set of probability distributions over Z. Hence, the final optimization problem that

needs to be solved is as follows (Zhao et al., 2012):

L(r) = Ep(z1:K ;r)[
K∑
k=1

[gk] = Ep(ZK ;r)[F (z)] (5.2)

where, K is the end time step, gk is the cost at timestep k, F (Z) represents the

cumulative cost till the last time step. As shown in Equation. 5.2, the expectation of

the cost generating function with respect to the control space probability distribution

is the primary optimization problem.
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For our problem of joint object tracking and adaptive subsampling, we have

formulated the following cost function:

gk = mean(| ubbk − gtbbk |)+

max(| ubbk − gtbbk |)+

(1− cos(usmk
, gtsmk

))

(5.3)

where, ubbk = {x, y, w, h} denotes the bounding box predicted by the algorithm and is

sampled from a multivariate Gaussian distribution with mean ϕlock (output of tracking

algorithm) and fixed variance, gtbbk is the ground truth bounding box corresponding

to state k, usmk
is the subsampling prediction sampled from a multivariate Gaussian

distribution with mean ϕsmk
and fixed variance, and gtsmk

is the corresponding ground

truth subsampling pattern.

The (1− cos(usmk
, gtsmk

)) term in the cost function guides the network to learn

the accurate subsampling patterns based on the ground truth object location. The

ground truth subsampling provides supervision for coarse grained subsampling in

order to zoom in on the frame region containing the object. The mean(| ubbk − gtbbk |

) + max(| ubbk − gtbbk |) term guides the network to focus in on the zoomed in region

of the frame and get the finer object location with stronger precision.

Since, the expectation operation requires an integral over a probability distribution

defined by the inaccessible policy, we make the assumption that p(z; rk) is a discrete

probability distribution. Furthermore, since the control space U(i) is defined by a

probability distribution, we can construct an episodic algorithm. This results in the

following simplification in the gradient (Zhao et al., 2012):

∇rL ≈ 1
K

N∑
n=1

K∑
k=1

∇r log µ(un
k | znk ; r)(F n

k (z)− bk) (5.4)

The variable bk is used to compensate for the high variance exhibited by the episodic

outputs and is the expectation of the reward function.
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Testing At test time, the LSTM receives feature vectors of fully sampled frames

from the YOLO only during the beginning of the keyframing interval. Once the

prediction phase is activated, the YOLO network no longer receives fully sampled

image frames and starts receiving non keyframes i.e. subsampled frames (Figure. 5.4).

The LSTM trained on image features is able to track the target and produce the

subsampling mask for consecutive frames partly due to the partial subsampled image

features from the YOLO network along with the object trajectory the network has

learnt to track implicitly. As it transpires, our network is capable of making reliable

predictions without receiving fully sampled image features at every time step.

5.2.7 Experiments

Datasets We have evaluated our algorithm on three different datasets: 1) TB-

100 (Wu et al., 2013), 2) LaSOT (Fan et al., 2019) and 3) TrackingNet (Muller et al.,

2018). The video sequences comprising these datasets feature a wide variety of objects

in motion including people, animals, vehicles, etc. We randomly split up the TB100

dataset into training and testing sets like in (Zhang et al., 2017). However, instead of

creating the split within video sequences as in (Zhang et al., 2017), we chose a random

set of 81 videos for training. We also use 30 and 100 randomly sampled videos for

training from LaSOT and TrackingNet datasets, respectively. The reasoning for these

spilts and also for using TB-100 for training is that the primary goal of our proposed

method is not to compare the methods for conventional object tracking rather it is to

analyze the performance on subsampled video sequences and hence energy-accuracy

trade-off. For fair comparison we also used the similar splits for the baseline methods

as well. We use only a subset of the main datasets during training in order to account

for the complexity of the LSTM network on top of the computational complexity of

the REINFORCE algorithm. We were further motivated to down-select the training
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videos to investigate the generalizability of our RL-trained LSTM network. Even with

sparse training data, our model manages to anticipate the state-control trajectories

remarkably well at test time.

Although there are instances where multiple objects are present per frame, we use

the ground truth labels to perform single object tracking. Furthermore, to develop

ground truth subsampling pattern masks needed for stronger supervision, we resized

all videos to 448 × 448 and gridded the frames into 7 × 7 grids forming a total of

4096 patches in each image frame. Each patch is assigned a binary label of 0 or 1

depending on whether a portion of the ground truth object lies in the patch or not.

Consequently, the 4096-D vector is used as a ground truth subsampling mask during

training.

Baselines To validate the effectiveness of the proposed tracker, we compare the

performance of our network against two types of baselines: (1) predictive trackers as

well as (2) state-of-the art tracking architectures deployed at test time on adaptive

subsampled videos.

For predictive trackers, we utilize baseline systems with similar structure to ours,

wherein we couple an object detector with a Kalman filter (Kalman, 1960) as shown

in (Iqbal et al., 2020), but we introduce variation by swapping out the tiny YOLO with

various detectors in the pipeline. This approach was also developed by (Li et al., 2021)

as a type of new baseline for visual tracking algorithms. The various object detectors

we utilize include the YOLO architecture (Iqbal et al., 2020), a Kernalized Correlation

Filter (KCF) (Henriques et al., 2014), a Distractor-Aware Tracker (DAT) (Possegger

et al., 2015), and Efficient Convolution Operators for Tracking (ECO) (Danelljan

et al., 2017).

For state-of-the-art object trackers, we use two recent methods: Accurate tracking
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by overlap maximization (ATOM) (Danelljan et al., 2019) and Learning discriminative

model prediction for tracking (DiMP) (Bhat et al., 2019). ATOM determines the target

using high-level information during offline learning and then a dedicated component for

classification is trained online to maximize the discerning capabilities of the network

while dealing with distractors in the input scene (Danelljan et al., 2019). DiMP is an

end-to-end tracking architecture wherein both foreground and background information

are leveraged for target prediction (Bhat et al., 2019). While both of these trackers

are state-of-the-art, we show in our experimental results they are not well-suited for

adaptively subsampled images.

Implementation Details We implement the proposed algorithm using the PyTorch

framework. A learning rate of λ = 0.0001 was selected after careful empirical analysis

during the initial training phase and the Adam optimizer was chosen. To train our

network, we chose a keyframing interval of 11 based on the fact that a duration of

11 frames doesn’t signify a huge change in motion trajectory of the object while

simultaneously being a good choice for maintaining energy savings/accuracy trade-off.

We have also conducted an ablation study demonstrating the effect of increasing the

keyframing interval for the proposed method as well as the baselines.

On average, the network needs at least three days of training on the Nvidia GeForce

RTX 2080 Ti graphics card in order to converge on a dataset. However, the test time

implementation can be performed in real time. Per frame computation time on GPU

using the proposed method during testing is approximately 3.4 ms.

5.2.8 Performance Evaluation

Benchmarking Tables 5.3 and 5.4 illustrate the effectiveness of the proposed

tracker in terms of achieving high object tracking precision (mean average precision -
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Method TB100 LaSOT TrackingNet

YOLO (Redmon et al., 2016)+KF 0.0626 0.1311 0.2857

KCF (Henriques et al., 2014)+KF 0.2156 0.1780 0.2865

DAT (Possegger et al., 2015)+KF 0.1905 0.1469 0.2463

ECO (Danelljan et al., 2017)+KF 0.4172 0.3293 0.2936

ATOM (Danelljan et al., 2019) 0.3063 0.3043 0.3654

DiMP (Bhat et al., 2019) 0.3155 0.3223 0.3452

Ours 0.5113 0.4979 0.5177

Table 5.3: Results. Our Method vs. Baselines. We Report the AUC Scores With
IoU@[0:0.05:1] and Keyframing Interval of 11 on the Three Benchmarking Datasets -
TB100, LaSOT and TrackingNet.

mAP) while maintaining satisfactory energy efficiency in terms of image resolution.

Tables 5.3 shows that our method outperforms all the baselines and achieves an AUC

score of 0.5113, 0.4979 and 0.5177 on the TB100, LaSOT and TrackingNet datasets,

respectively. Furthermore, we achieve high energy savings in terms of ratio of pixels

turned off per frame on all three datasets, as has been shown in Table 5.4. Note that

our method is outperformed in terms of energy savings by most of the other methods

with a keyframing interval of 11. This can be attributed to the fact that the other

methods are not trained for adaptive subsampling and, therefore, are prone to missing

target objects and switching pixels off inside the region of interest. This provides

higher energy savings at the cost of deterioration of tracking performance. Hence

maintaining the energy-accuracy trade-off is the key which is well achieved by our

method.

Ablation Study of Subsampling Loss We formulate our loss as a function of

both the bounding box prediction loss as well as the subsampling loss. Analyzing the
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Method Dataset Ratio of Pixels Off B1/B2/B3 Power(mW)

TB100 0.7839 9143 / 2514 / 510

Ours LaSOT 0.8736 5113 / 1406 / 285

TrackingNet 0.7770 9212 / 2533 / 514

TB100 0.6489 15531 / 4270 / 867

YOLO (Redmon et al., 2016)+KF LaSOT 0.8085 4835 / 1329 / 270

TrackingNet 0.6195 14106 / 3879 / 787

TB100 0.9732 4957 / 1363 / 276

KCF (Henriques et al., 2014)+KF LaSOT 0.8432 6247 / 1717 / 348

TrackingNet 0.7697 9993 / 2747 / 557

TB100 0.9741 4894 / 1345 / 273

DAT (Possegger et al., 2015)+KF LaSOT 0.8443 6193 / 1703 / 345

TrackingNet 0.7721 9896 / 2721 / 552

TB100 0.9712 5076 / 1395 / 283

ECO (Danelljan et al., 2017)+KF LaSOT 0.8281 7228 / 1987 / 403

TrackingNet 0.7437 10993 / 3023 / 613

TB100 0.9758 4853 / 1334 / 270

ATOM (Danelljan et al., 2019) LaSOT 0.8589 4839 / 1330 / 270

TrackingNet 0.8270 7139 / 1963 / 398

TB100 0.9850 4195 / 1153 / 234

DiMP (Bhat et al., 2019) LaSOT 0.8677 4657 / 1280/ 260

TrackingNet 0.8499 6181 / 1699 / 345

Table 5.4: Energy Results for Adaptive Subsampling With a Keyframing Interval of
11. Our Method vs. The Baselines.
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network performance on the test data by training the network both with and without

the subsampling loss, we observe the advantage of implementing the proposed loss

function. After having trained the network for roughly the same number of epochs, we

obtain a test mAP (IoU@0.5) of 0.3388 on the TB100 dataset without the subsampling

prediction loss and a test mAP of 0.5262 with the subsampling prediction loss. This

can be attributed to the fact that at the instances when the network is not able to

converge to the correct ROI, the subsampling information may capture the correct

location information. Essentially, the image frame’s grid-wise division helps encode

the moving objects’ correct localization even for erroneous bounding box predictions.

Keyframing We refer to the fully sampled images that the network receives as

the keyframes and the rest are referred to as subsampled frames. After the first fully

sampled frame is processed through the Tiny YOLO network + LSTM (update phase),

we get the object location and subsampling mask prediction. For the consecutive

non-keyframes, the LSTM accepts a feature vector extracted from a subsampled

frame wherein the scene content inside the previously predicted bounding box and

subsampling mask is read out from the sensor as the new input, with all other pixels

switched off (prediction phase). A user-defined interval triggers the next update phase,

i.e. the reception of the next keyframe. Note that a longer interval will result in higher

energy savings at the expense of tracking precision. The interval can be adapted as

per the fidelity needs of the application.

Figure 5.6 depicts the effect of increasing the interval between the update stage

and the prediction stage of the tracking algorithm. Comparing the effect of increasing

the keyframing interval, it is evident that our method is able to maintain significant

precision even at higher keyframing intervals. On the contrary, techniques like the

KCF+KF and especially the ECO+KF, which are shown to perform noticeably well at
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Figure 5.6: Results for the Keyframing Experiment. We Have Swept the Keyframing
Interval From 15 to 240 for Our Method and All of the Baselines on the TB100
Dataset and Reported The mAP (IoU@0.5). It Is Evident That Our Method Is Able
to Maintain the Tracking Fidelity for a Longer Duration.

lower intervals, cannot sustain that same performance at higher intervals. Further, the

ATOM and DiMP methods start breaking down as the keyframing interval increases.

The reason being, the frequency of fully sampled frame information has decreased

with the increase of keyframing interval, and these methods don’t work very well when

there is dearth of target specific information. This proves the potential efficacy of

our technique for applications where both tracking accuracy and energy efficiency

are of prime importance. Note that the keyframing experiment was conducted on

the TB100 test data. We attribute our network’s improved performance even with

a prolonged prediction phase on its ability to zero in on (even coarsely for longer

keyframing intervals) the object’s region.

Figure 5.6 shows the effect of keyframing on mAP (IoU@0.5) for intervals of up to

240 frames. For most computer vision based applications, an effective frame rate of 60

FPS affords satisfactory latency. Therefore, it is promising that our network retains
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it’s performance for the most part even at the 60 frames interval. This implies that it

will not require the next fully sampled frame for an entire second when integrated

with a real camera system. Thus extremely high degree of object motion for long

durations would degrade our network performance similar to the baselines.

Power Analysis Adaptive subsampling offers an energy efficient solution whereby

pixels are switched off outside of the ROI for non-keyframes, thus saving energy.

To estimate the energy savings we achieve with our RL tracking algorithm, we

characterize the energy requirements of several CMOS image sensors based on analysis

from (LiKamWa et al., 2013; Iqbal et al., 2021). Using the ROIs generated from

the proposed algorithm, we assert that the image sensor can skip certain columns

during the frame read out and read only the pixels from the predicted regions. Since

fewer pixels would be read out, it would result in substantial power savings while

sensing. We model power for sensors B1, B2 and B3 from (LiKamWa et al., 2013)

with resolution 3264x2448, 2592x1944 and 752x480 respectively.

Then the model equations show that the average power consumption is proportional

to the image resolution (LiKamWa et al., 2013):

P =
PidleTexp + PactiveTactive

Tframe

(5.5)

P = α1.R.Texp.f +
R.c2.N

f
(5.6)

where R represents frame rate (fixed at 30 fps), Texp is the exposure time (fixed at

0.05ms), N represents frame resolution, c2 denotes static power consumption (fixed

at for every sensor: B1: 159.0, B2: 93.0 and B3: 13.1), α1 (fixed at for every sensor:

B1: 4.0E − 06, B2: 8.2E − 07 and B3: 3.35E − 06) is a sensor intrinsic independent

of resolution and f represents the optimal clock frequency dependent on resolution

( c2.N
α1.Texp

)1/2.
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Figure 5.7: Scatter Plot Demonstrating the Accuracy vs. Energy Savings Tradeoff
for the TB100 Dataset (With a Keyframing Interval of 11). Our Method Provides the
Highest AUC Score With Satisfactory Energy Savings.

The power consumption in milliWatts is presented in Table 5.4. We see more

savings in sensors B2 and B3 since, they have a higher resolution. We fixed parameter

Texp to 0.05ms which works typically for outdoor settings and a frame rate R of 30fps.

Figure 5.7 visualizes the power-accuracy tradeoff of the various methods, where

accuracy is denoted by the AUC score on the TB100 dataset and corresponding power

consumption is given in watt. As is evident from the tradeoff plot, other methods

rank higher in terms of energy savings but at the expense of tracking performance.

On the other hand, our network, although slightly more power-hungry, offers superior

tracking performance because of it having learnt the implicit subsampling information

during training. Therefore, in terms of energy-accuracy tradeoff, our method strikes

the right balance and sustains good tracking accuracy with reasonable energy savings.
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5.3 Summary

In this chapter, we considered data selection/capture mechanism as a prior. We

argued that for efficient resource utilization, it is important to understand the data

priority in several applications. We address this from the view point of object detection

and tracking. We developed two adaptive subsampling paradigms which aim to read

specific regions from a video frame while it is being captured through an image sensor.

The first paradigm was based on frame intensity i.e. we keep capturing the same region

of interest as long as the change in frame intensity in consecutive frames is below

an empirically chosen threshold. The second adaptive subsampling paradigm is a

predictive method which uses REINFORCE algorithm to predict the region of interest

masks for consecutive frames and uses these masks for sequential frame capture. Using

both the paradigms, we show that the algorithms are able to capture regions of interest

with high accuracy and hence, they can save the energy and bandwidth in terms of

capturing the data in real time using sensors. We believe this research is the first

step towards superior embedded object tracking algorithms deployed in the wild while

maintaining energy-efficiency.
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Chapter 6

CONCLUSIONS

Understanding of different priors which altogether lead to the current success of

deep learning models for several applications is critical. The main challenge lies in

understanding that human intervention during the deployment of any deep learning

systems in terms of data capture or model selection serves as a constraint which will

govern the final task performance. Hence, in this work we studied the effect of several

priors on different applications ranging from sequence modelling to image classification

and object tracking. In sequence modelling problem, we consider applications such

as, audio source separation, clinical time-series based diagnosis and global horizontal

irradiance forecasting. For all three applications, we choose similar architectural design

choices i.e. using dilated dense convolutions. This was motivated by the fact that

robust multi-scale feature extraction achieved by dilated dense convolutions is able to

provide richer context and give a bird’s eye view of longer temporal histories. Based

on the empirical evidence, we show that robust features obtained using such model

priors resulted in better task performance.

Apart from model prior, we also study the effect of data priors for image clas-

sification applications. In terms of data priors, we primarily considered task and

domain priors. Domain priors imply the prior information that can be leveraged from

different data distributions for the same task. In conventional transfer learning, the

assumption is that all the available data distributions contribute equally such that

model can perform well on the new distribution. However, in this work through our

proposed optimization paradigm i.e. Invenio, we show that systematic knowledge

transfer is the key as extremely disparate distributions have been shown to lead to
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inferior generalization on new data. Invenio achieves this systematic knowledge

transfer through a semantic space that is obtained using the gradients during the

model training step. Similar semantic space unfolds for multiple observed tasks as

well. The semantic space is able to quantify the relationships between different data

distributions (or tasks) to show which distribution is more closely related to the other

distribution and uses these weightings to achieve improved generalization (domains

and tasks).

Lastly, we also consider data selection/capture mechanism as a prior. We argue

that for efficient resource utilization, it is important to understand the data priority

in several applications. We address this from the view point of object detection and

tracking. We develop two adaptive subsampling paradigms which aim to read specific

regions from a video frame while it is being captured through an image sensor. The

first paradigm is based on frame intensity i.e. we keep capturing the same region

of interest as long as the change in frame intensity in consecutive frames is below

an empirically chosen threshold. The second adaptive subsampling paradigm is a

predictive method which uses REINFORCE algorithm to predict the region of interest

masks for consecutive frames and uses these masks for sequential frame capture. Using

both the paradigms, we show that the algorithms are able to capture regions of

interest with high accuracy and hence, they save the energy and bandwidth in terms

of capturing the data in real time using sensors.
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