Description
Studies of discourse are prevalent in mathematics education, as are investigations on facilitating change in instructional practices that impact student attitudes toward mathematics. However, the literature has not sufficiently addressed the operationalization of the commognitive framework in the context of Calculus I, nor considered the inevitable impact on students’ attitudes of persistence, confidence, and enjoyment of mathematics. This study presents an innovation, founded, designed, and implemented, utilizing four frameworks. The overarching theory pivots to commognition, a theory that asserts communication is tantamount to thinking. Students experienced a Calculus I class grounded on four frames: a theoretical, a conceptual, a design pattern, and an analytical framework, which combined, engaged students in discursive practices. Multiple activities invited specific student actions: uncover, play, apply, connect, question, and realize, prompting calculus discourse. The study exploited a mixed-methods action research design that aimed to explore how discursive activities impact students’ understanding of the derivative and how and to what extent instructional practices, which prompt mathematical discourse, impact students’ persistence, confidence, and enjoyment of calculus.
This study offers a potential solution to a problem of practice that has long challenged practitioners and researchers—the persistence of Calculus I as a gatekeeper for Science, Technology, Engineering, and Mathematics (STEM). In this investigation it is suggested that Good and Ambitious Teaching practices, including asking students to explain their thinking and assigning group projects, positively impact students’ persistence, confidence, and enjoyment. Common calculus discourse among the experimental students, particularly discursive activities engaging word use and visual representations of the derivative, warrants further research for the pragmatic utility of the fine grain of a commognitive framework. For researchers the work provides a lens through which they can examine data resulting from the operationalization of multiple frameworks working in tandem. For practitioners, mathematical objects as discursive objects, allow for classrooms with readily observable outcomes.
Download count: 2
Details
Title
- Thinking Out Loud: The Role of Discourse in Understanding the Derivative in Calculus I
Contributors
- Chowdhury, Madeleine Perez (Author)
- Judson, Eugene (Thesis advisor)
- Buss, Ray (Committee member)
- Reinholz, Daniel (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ed.D., Arizona State University, 2022
- Field of study: Leadership and Innovation