Description
Recombinases are powerful tools for genome engineering and synthetic biology, however recombinases are limited by a lack of user-programmability and often require complex directed-evolution experiments to retarget specificity. Conversely, CRISPR systems have extreme versatility yet can induce off-target mutations and karyotypic destabilization. To address these constraints we developed an RNA-guided recombinase protein by fusing a hyperactive mutant resolvase from transposon TN3 to catalytically inactive Cas9. We validated recombinase-Cas9 (rCas9) function in model eukaryote Saccharomyces cerevisiae using a chromosomally integrated fluorescent reporter. Moreover, we demonstrated cooperative targeting by CRISPR RNAs at spacings of 22 or 40bps is necessary for directing recombination. Using PCR and Sanger sequencing, we confirmed rCas9 targets DNA recombination. With further development we envision rCas9 becoming useful in the development of RNA-programmed genetic circuitry as well as high-specificity genome engineering.
Download count: 1
Details
Title
- Development of CRISPR-RNA guided recombinases for genome engineering
Contributors
- Standage-Beier, Kylie S (Author)
- Wang, Xiao (Thesis advisor)
- Brafman, David A (Committee member)
- Tian, Xiao-jun (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2018
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: M.S., Arizona State University, 2018
- bibliographyIncludes bibliographical references (pages 16-18)
- Field of study: Biology
Citation and reuse
Statement of Responsibility
by Kylie S Standage-Beier