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ABSTRACT 
 

Recombinases are powerful tools for genome engineering and synthetic biology, 

however recombinases are limited by a lack of user-programmability and often require 

complex directed-evolution experiments to retarget specificity. Conversely, CRISPR 

systems have extreme versatility yet can induce off-target mutations and karyotypic 

destabilization. To address these constraints we developed an RNA-guided recombinase 

protein by fusing a hyperactive mutant resolvase from transposon TN3 to catalytically 

inactive Cas9. We validated recombinase-Cas9 (rCas9) function in model eukaryote 

Saccharomyces cerevisiae using a chromosomally integrated fluorescent reporter. 

Moreover, we demonstrated cooperative targeting by CRISPR RNAs at spacings of 22 or 

40bps is necessary for directing recombination. Using PCR and Sanger sequencing, we 

confirmed rCas9 targets DNA recombination. With further development we envision 

rCas9 becoming useful in the development of RNA-programmed genetic circuitry as well 

as high-specificity genome engineering.  
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GLOSSARY OF ABBREVIATIONS 
 

DNA: Deoxyribonucleic Acid 

RNA: Ribonucleic Acid 

CRISPR: Clustered Regularly Interspaced Short Palindromic Repeat 

sgRNA: single-guide RNA 

PAM: Protospacer Adjacent Motif  

Cas9: CRISPR-associated protein 9 

dCas9 Catalytically InactiveCas9  (i.e. Cas9D10A,H840A) 

rCas9: Recombinase Fused Cas9 

TE: Transposable Element 

DBD: DNA-binding Domain 

Bp: Base Pair 

Kb: Kilobase Pair (1000 Bp) 

GFP: Green Fluorescent Protein 

mCherry: Red Fluorescent Protein 

DSB: Double-stranded DNA Break 

SSB: Single-stranded DNA Break 

Indels: Insertion-Deletion Mutations 

YPD Media: Yeast Extract Peptone Dextrose Media 

Dropout Media: Media lacking defined amino acids, selects for prototrophic markers 
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INTRODUCTION 
 

The development of new genome engineering technologies is crucial for the study 

of disease genetics and exploring the development of novel gene therapies1,2. 

Recombinases are a class of DNA manipulating enzymes. These are powerful tools for 

predictable and high specificity genetic manipulations.  Serine recombinases are often 

employed for routine in vivo and in vitro DNA manipulations3–5.  Recombinases have 

tremendous potential for therapeutic DNA manipulations. For instance, Karpinski and 

coworkers demonstrated directed evolution of Cre recombinase towards targeting 

conserved sequences of Human Immunodeficiency virus (HIV) long-terminal repeats 

(LTRs)6. This enabled removal of the HIV provirus from the human genome. However 

this required 150 rounds of directed evolution and counter-selection to ensure high 

specificity to generate the retargeted recombinase. Recombinase based DNA 

manipulations are tremendously hard to reprogram to new DNAs of interest.  

DNA transposable elements (TEs) are capable of catalyzing movement and repair 

of DNA molecules. Some bacterial TEs contain sufficient enzymatic machinery to 

facilitate their requisite DNA manipulations7–9. Resolvases are a novel class of these 

proteins associated with TEs that facilitate highly targeted DNA repair have a well 

understood structure (Fig. 2A) and have been previously engineered target new DNAs of 

interest10. However, previous techniques rely on fusion of a resolvase with alternative 

DNA binding domains and are not easily targetable for new experiments and require 

coexpression of recombinase heterodimers11.  
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Clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR 

associated proteins (e.g. Cas9) function as a bacterial immune system that enables 

recognition and cleavage of foreign nucleic acids (ie. DNA and RNA)12. The relative 

robustness and ease of implementing some engineered CRISPR systems in eukaryotic 

organisms has enhanced our ability to edit genetic material13,14. However, CRISPR based 

techniques may lead to off-target double stranded DNA breaks (DSBs). Off-target DNA 

damage may lead to mutations ranging from unwanted insertion and deletions (indels) to 

destabilizing the karyotype15,16. These unintended mutations impede application of 

CRISPR systems for manipulating organisms with large and highly complex genomes. 

The drive to avoid DSBs in genome editing lead to the development of Cas9-nickase 

base-editors17. However, it is still possible for the base-editors to induce off-target indels 

due to single-stranded DNA breaks18. Also these tools are relatively limited to single 

nucleotide changes preventing them from being used for targeted DNA deletion or 

integration. Since, recombinases are relatively unprogrammable, and conversely CRISPR 

systems may introduce off-target mutations, we reasoned we could fuse Cas9 with a 

hyperactive resolvase. This should result in an RNA-guided recombinase.  

RESULTS 

Identification of Genome Targeting Recombinases 
 

To experimentally assess resolvase protein function, we constructed a reporter 

system in Saccharomyces cerevisiae (yeast) (Fig. 1). We choose yeast as it is a model 

eukaryote and can serve as a ‘proxy-organism’ for the development of genome 

engineering tools19,20. In the reporter assay, the green fluorescent protein (GFP) gene is 
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integrated into yeast chromosome 5 and is surrounded by resolvase recognition sites. 

When the resolvase protein is active, this results in deletion of GFP. At an adjacent 

position, mCherry is coexpressed as a constitutive marker. Flow cytometry allows for 

rapid and quantitative screening of resolvase function (Fig. 1B). We tested 3 resolvases 

described in the literature derived from transposon TN3 and bacteriophage mu (Gin). 

Using this technique we identified the mutant resolvase TN3G79S,D102Y,E124Q as functional 

in targeting eukaryotic genomic DNA (Fig. 2B,C). Henceforth, we refer to this 

recombinase as mTN3 and utilize this resolvase in genomic targeting experiments.  

 

 

Fusion of mTN3 Recombinase to dCas9 
 

Following identification of an active resolvase in S. cerevisiae, we sought to fuse 

the catalytic domain of mTN3 resolvase with the programmable DNA binding of a 

catalytically inactive Cas9 protein (dCas9). We utilized molecular cloning techniques to 

 
Figure 1: Genome Integrated Recombinase Assay. (a) To assess the functionality of 
recombinases’ ability to target genomic DNA, we constructed a yeast integrative vector. This 
vector when digested with ApaI and transformed into yeast integrates into the URA3 locus on 
chromosome 5. The His3 cassette enables selection for integrants using hisitidine deficient 
plates.  (b) GFP and mCherry are constitutively expressed from TEF1 promoters. When a 
recombinase mediates deletion between recognition sites (A) this results in GFP deletion, 
while mCherry expression remains intact. 
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construct a resolvase-dCas9 fusion (rCas9) under control of a galactose responsive 

promoter (Fig. 4A). We cooexpressed rCas9 with multiple single-guide RNAs (sgRNAs) 

and an improved genome integrated fluorescent reporter (Fig. 4B). Given resolvases bind 

to substrate DNA as dimers (Fig. 2A), we reasoned sgRNAs would have to target around 

a resolvase “core” sequence (Fig. 3). Through initial flow cytometry screens we 

identified an rCas9-sgRNA design combinations with approximately one sixth the 

efficiency of the mutant resolvase (Fig. 4C). mTN3 with its native helix-turn-helix DNA 

binding domain (mTN3-DBD) resulted in 35% GFP deletion, while rCas9 resulted in 6-

8% GFP deletion after 96 hours of galactose induction (Fig. 4C). We characterized 

 
Figure 2: Identification of Active Recombinases. We utilized the assay described in figure 1 to 
determine the ability of different recombinase to effectively target deletion. (a) We focused on 
a series of recombinases homologous to γ∆ (PDB 1GDT). Since these recombinases have 
relatively separated DNA binding and catalytic domains. (b) The resolvase was expressed 
from a yeast episomal vector (see methods) and targets GFP deletion when active. (c) 
Repressentative flow cytometry histograms of cells with various recombinase constructs. Left 
of the dashed line is GFP negative. TN3G79S,D102Y,E124Q  was the sole recombinase substantially 
active in our deletion assay. 
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targeting of rCas9 by systematically testing sgRNA spacings. Interestingly, we found 

spacing of 22 and 40bp apart are ideal, however 30bp is relatively non-functional in 

symmetrical placement around the core sequence (Fig. 4D). However, we observed 31bp 

to be highly functional with asymmetric placement around the central core. This is 

consistent with the three dimensional structure of the Rosalind-Watson-Crick DNA 

double helix being 10-11bp per full rotation; combined with co-localization of resolvase 

catalytic domains on the same side of the DNA molecule. We further qualitatively 

characterized deletions using fluorescent microscopy (Fig. 4F). Expression of rCas9 

results in cells without GFP, while mCherry expression remains. This suggests the 

recombinase is not prevalently resecting large parts of chromosome 5.  

Analysis of Interdomain Linker Function  
 

To analyze the functional effect of linker peptides between mTN3 and dCas9 we 

tested a series of linker domains in our deletion assay (Fig. 5A). These range from 

varying lengths of flexible glycine serine (GGS) linkers to the rigid XTEN, a previously 

described linker domain that has resulted in functional fusion proteins with Cas921. We 

also tested a GGS-XTEN hybrid linker. We see a trend of longer linkers having slightly  

 
Figure 3: rCas9 Target Site Design. Since TN3 resolvase binds to its recognition site as a 
dimer we reasoned sgRNAs targeting the to the left and to the right of the core sequence 
should result in activity.  TN3 core sequence is in orange, and PAMs are in red.  
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higher efficiency compared to the shortest linker (i.e. linker-1), however we did not see a 

large (>10%) improvement of rCas9 efficiency (Fig. 5B). Perhaps, future investigation to 

improve rCas9 efficiency can focus on addition of larger linker sequences.  

Confirmation rCas9 operates as a DNA recombinase 
 

To confirm rCas9 operates as a DNA recombinase we utilized PCR with primers 

flanking the GFP expression cassette. The PCR product of the starting reporter is 5 Kb.  

 
Figure 4: Demonstration of rCas9 Genomic Targeting. (a) representations of expression 
constructs for recombinase and rCas9 systems. mTN3 in organge represents the catalytic 
domain of the hyperactive mutant identified in figure 2. NLS indicates an SV40 nulcear 
localization sequence. Plasmids are described further in the methods. (b) rCas9 targeting of A-
sites when active results in GFP deletion. (c) representative flow cytometry of deletion assay. 
mTN3 results in 35% GFP deletion, while rCas9 results in 6-8%. (d) We systematically tested 
sgRNA spacing and its effect on rCas9 function. (e) Fluorescent microscopy showing GFP 
deletions have intact mCherry expression. This results in red only cells when targeted.  
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Deletion of GFP results in a 4 Kb PCR product (Fig. 6A) . Expression of mTN3-DBD 

results in formation of the 4 Kb deletion product. When rCas9 is expressed with sg(-) (i.e. 

a guide not matching the reporter cassette) only the starting 5 Kb band is observed. When 

rCas9 binding is targeted to the reporter this results in the formation of the 4 Kb deletion 

product. These results indicated that rCas9 is resulting in DNA deletion. To further 

characterize the deletion product we gel-extracted and sub-cloned the deletion product. 

We sequenced 5 clones and found they consistently match the expected recombination 

product. We did not observe any insertion or deletion mutations (Fig. 6B). This indicates 

when CRISPR RNAs are cooperatively targeted to a recognition site rCas9 is capable of 

catalyzing DNA deletion.  

 

 
Figure 5: Analysis of Interdomain Linkers on rCas9 Function. (a) To asses the effect of 
interdomain linkers we constructed a series of interdomain linkers ranging from (GGS)3, 
linker-1, to longer amino acid sequences and hybrid flexible and rigid linkers. “N” indicates 
N-terminus and “C” C-terminus. (b) Deletion assay results for linker variant rCas9s. We focus 
on linker-2 in subsequence experiments.  
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CONCLUSION 
 

Here we demonstrated the ability to fuse the catalytic domain of a hyperactive 

resolvase with the DNA binding functionality of catalytically inactive Cas9. This results 

in sgRNA targeting of recombinase functionality. This work focused on targeting the 

default Res1 core sequence. We reasoned that in proof of principle experiment we should 

assay the ability of rCas9 facilitate recombination against a substrate of known 

functionality. There have been conflicting reports regarding the versatility of resolvase 

catalytic activity. Some reports indicate directed evolution and catalytic reprogramming 

is necessary to target new DNAs, however other reports have demonstrated that 

homologous recombinases (e.g. Gin) can target many DNA sequences. Further 

experiments that focus on changing the core sequence would be necessary to know for 

certain what the versatility of rCas9 is. Similarly another current constraint of rCas9 is 

 
Figure 6: Confirmation rCas9 Targets DNA Deletion. (a) PCR of deletion reporter in cells 
expressing mTN3-DBD (mTN3 here), and rCas9. The 5 Kb band is the starting GFP-mCherry 
reporter (green and red icon). rCas9 conditionally results in deletion when ysg(6:12) guides it 
to its target site. This is illustrated by the occurrence of the 4 Kb deletion band (red icon). (b) 
sequencing of subcloned PCR products indicates formation of the expected deletion product. 
EcoRI and MluI sites function as landmarks that originally flanked the GFP expression 
cassette. We observed no indels within or near the target site.   
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it’s relatively low efficiency. We saw minor improvements with varying interdomain 

linker sequences, however these improvements were relatively small compared to the 

activity of mTN3 with its native helix-turn-helix DNA binding domain.  This may be in 

part due to Cas9’s large structure, which may not present the mTN3 catalytic domains in 

close proximity to the target DNA. Nevertheless rCas9 future improvements in core 

sequences and target site design may lead to improvement of recombination efficiency.  

rCas9 may be of broad use in genome engineering. Recombinases such as Cre and 

PhiC31 have been used for engineering eukaryotic genomes. These facilitate predictable 

high specificity DNA manipulations, however these lack any semblance of 

‘programmability’ since they rely on complex protein-DNA interactions to target 

substrate binding. CRISPR RNAs target Cas9 binding with straightforward Watson-crick 

base-pairing rules. We sought here to synergize the binding of RNA-targeted binding of 

Cas9 with the catalytic activity of a hyperactive recombinase. This was successful. With 

further understanding of the versatility of rCas9 and its ability to target DNA 

manipulations beyond deletion (e.g. integration and inversion) it may prove helpful for 

high-specificity rewriting of genomes. This of course has application in the development 

of cell lines for basic science purposes or for development of gene therapies.  

Likewise, rCas9 may be used in synthetic biology to implement recombinase 

based logic systems. Previously serine recombinases, such as Bxb1 and PhiC31, were 

employed to implement recombinase based logic gates22,23. This system requires 

coexpression of multiple recombinases. To add additional recombinases bioinformatics 

searches and functional screening for orthogonal recombinase proteins24. In the case of 

rCas9, sgRNAs can retarget DNA binding. sgRNAs placed under inducible promoters 
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should result in distinct recombination events in response to different experimental 

inputs. Perhaps more interestingly, since rCas9 can hypothetically target DNA 

integration, deletion products may be integrated at other chromosomal locations. This is 

an interesting opportunity for genome engineering and synthetic biology, in that it would 

impart the ability program DNA movement on the genome.  This will likely require 

improved cooperative targeting for Cas9 integration and would have to be experimentally 

demonstrated, however it remains an interesting possibility.  

In summary, we demonstrate the function of an RNA-guided recombinase in 

proof-of-principle experiments. We identified basic design principles for rCas9 protein 

design, such as functional sgRNA spacings and interdomain linkers. We determined 

rCas9 does indeed operate as a DNA recombinase using PCR and DNA sequencing. We 

envision this being the first step in developing RNA-guided recombinases that are 

amenable for use in human cells. This may ultimately be useful for ultra-specific DNA 

manipulations for basic science and translational gene therapies. rCas9 may be utilized 

for synthetic gene networks enabling RNA-programmed recombinase based logic, RNA-

guided genetic ‘recorders’ and programmable genome ‘SCRaMbLE’ techniques25–28.  

METHODS 

Bacterial Culture  
 

Molecular cloning was conducted using E.coli NEB-10-Beta (New England 

Biolabs, NEB). LB Miller Medium (Sigma Aldrich, Sigma) was supplemented with 

appropriate antibiotics for plasmid maintenance: Ampicillin (100µg/ml) and/or 

Kanamycin (30µg/ml), or Chloramphenicol (30µg/ml). E.coli were cultured at 37˚C.  
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Yeast Culture  
 

All yeast were cultured at 30˚C unless otherwise noted. S. cerevisiae YPH500 or 

FY834 (ATCC# 90845) (Ref. 29) were cultured on YPD agar plates and in liquid medium 

containing glucose.  Liquid cultures were shaken at 250-300 RPM. Yeast minimal 

dropout media contained either 2% glucose or 2% galactose with 1% raffinose and 

necessary amino acid dropout solutions (Clonetech). Yeast were made competent using 

the Zymo competent yeast kit and transformed using manufacturer protocol. Genomic 

Integrations and Plasmid transformations were selected for on yeast minimal dropout 

plates with amino acid combinations necessary for selection. Yeast were cultured in 

liquid yeast dropout media necessary for plasmid selection. 

Molecular Cloning of Recombinases 
 

 Coding regions for TN3G79S,D102Y,E124Q , TN3R2A,E56K,G101S,D102Y,M103I,Q105L , 

GinH106Y (respective references 9,11,30) containing native DNA-binding domains were 

synthesized as human codon optimized gBlocks from Integrated DNA Technologies 

(IDT). Coding regions were placed under control of a Gal1 promoter via cloning gBlock 

into the XbaI and XhoI sites of p415 Gal1-Cas9. This results in replacement of Cas9 with 

the recombinase coding sequences. 

Construction of Yeast Genome Integration Vectors 
 

 The Yeast Genomic Integration Vector (pMG, Fig. 1B) was generated using 

vectors previously described (Ref. 31). A modified Ura3 homology arm sequence, 

synthesized by IDT, was cloned into EcoRI and NotI sites. Gal promoters were replaced 
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with Tef1 promoters for constitutive expression of GFP and mCherry. To integrate into 

the yeast genome, 1-2µg of pMG was digested with ApaI in 50 µl reactions for ≥1 hour at 

37˚C. 5µl of Restriction product was transformed into competent S. cerevisiae YPH500 

or FY834 using protocol from Zymo Competent Yeast Kit (Zymo). The resulting pMG 

vector integrates into the URA3 locus of S. cerevisiae Chromosome V and confers 

histidine prototrophy.  

To clone in recombinase recognition sequences into pMG, Res1, Gix and A-sites 

were synthesized as overlapping oligonucleotides. 5’ phosphates were added to 

oligonucleotides by incubating 1ug of top/bottom oligonucleotides in 50 µl reactions 

containing 1X T4 DNA Ligase Buffer and 10 units of T4 Polynucleotide Kinase (T4 

PNK) at 37°C overnight. Oligonucleotides were duplexed by heating the kinase reactions 

to 90°C on an aluminum heating block for 5 minutes followed by slowly returning the 

reaction to room temperature (25°C) over approximately 1 hour. Following duplexing, 

Res1, Gix or A-sites were ligated into EcorI and MluI sites surrounding GFP.  

Molecular Cloning of rCas9 
 

 rCas9 was constructed using p415 Gal1-Cas9 (Addgene# 43804)(Ref. 32) as a 

template for Cas9. The mTN3 catalytic domain along with D10A and H840A mutations 

to Cas9 were simultaneously generated using PCR primers containing SapI sites. Purified 

PCR products were digested with SapI and gel-extracted using the Sigma-Aldrich gel-

extraction kit. rCas9 sub-fragments were ligated in equimolar amounts to p415 Gal1-

Cas9 digested with XbaI and XhoI. The resulting p415 Gal1-rCas9 contains a Cen6 

origin of replication and a leucine prototrophic marker.  
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Molecular Cloning of Interdomain Linkers 
 

 To clone new linker sequences, pUC19 containing a XbaI-SalI fragment of rCas9 

was amplified outward with primers introducing SapI sites at the junctions of mTN3 and 

dCas9. Purified products were digested with SapI and ligated with oligo duplexes coding 

for various linker sequences. Following confirmation of correct ligation products, XbaI-

SalI fragments were cloned to replace between XbaI and SalI sites in p415 Gal1-rCas9.  

Cloning of sgRNAs 
 

 Yeast sgRNA expression cassettes, ysg(#)s, were contrstructed by cloning 

oligonucleotide duplexes into, pSB1C3 containing an SNR52 promoter with inverted 

SapI sites and an sgRNA hairpin recognized by S. pyogenes Cas9. ysgRNAs were then 

PCRed with primers adding EcoRI and SapI, or SpeI and SapI sites. Purified PCR 

product were then digested with respective restriction enzymes, heat inactivated and 

ligated into pRS424 (Ref. 33) digested with EcoRI and SpeI. The resulting pYSG(#:#) 

contained pairs of sgRNA cassettes with a 2µ origin of replication and tryptophan 

prototrophic marker.  

rCas9 Deletion Assay 
 

To assay rCas9 function, YPH500 Ura3(MGab) with p415 Gal1-rCas9 and with 

various pYSG derivatives were cultured in 3ml YP –Leu, -Trp with 2% Glucose.  After 

24 hours, 5µl of the stationary phase culture was used to inoculate 3ml of YP –Leu, -Trp 

with 2% Galactose, 1% Raffinose. Cell were diluted down (5µl saturated culture in 3ml 

media) at 48 hour intervals. Cells were analyzed by flow cytometry and fluorescent 
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microscopy after 96 hours of galactose induction. Genomic DNA was also prepared after 

galactose induction. Recombinase screening (Fig. 2) was conducted as described above 

with 48 hours total of galactose induction.  

Flow Cytometry 
 

 All flow cytometry was conducted on an Accuri C6 Flow Cytometer (BD 

Biosciences, CA). Samples were gated by consistent forward scatter (FSC) and side 

scatter (SSC) and 10,000 events within the FSC/SSC gate were collected. A 488 nm laser 

excitation and a 530±15 nm emission filter was used for GFP fluorescence determination. 

Flow cytometry files were analyzed using manufacture software and in MatLab (The 

MathWorks). 

Fluorescent Microscopy 
 

 200µl of stationary phase cultures of yeast were spun down at 4000*g for 2 

minutes and washed once in 1X PBS solution. Following washing, cells were 

concentrating by resuspending in 10-20µl of 1X PBS. 1-2 µl of cell solution was placed 

on glass microscope slides and visualized on a Nikon Ti-Eclipse inverted microscope 

with and LED-based Lumencor SOLA SE Light Engine with appropriate filter sets. GFP 

was visualized with an excitation at 472 nm and emission at 520/35 nm using a Semrock 

band pass filter. mCherry was visualized with excitation at 562 nm and emission at 

641/75 nm.. Constant exposure times, LUT and image gain adjustments were applied to 

microscopy data. 
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Genomic DNA Isolation and PCR Analysis of Deletion 
 

Yeast genomic DNA was prepared using the Zymo yeast genomic DNA 

preparation kit using the manufacturer’s protocol with phenonl-chloroform steps 

included. To assay genomic deletion, PCR was conducted using Phusion DNA 

polymerase (New England Biolabs). Annealing temperatures and extension times were 

calculated using the manufacturer’s protocol for High Fidelity Buffer. PCR products were 

visualized via 0.8% agarose gel eletcrophoresis.   

Sequencing of Deletion Products 
 

 Following gel resolution of amplicons, deletion bands were gel-extracted using 

the Gen Elute gel extraction kit (Sigma-Aldrich) using the manufacturer’s protocol. 

Following extraction, products with phosphorylated via incubation in 50µl reactions with 

T4 PNK and 1X T4 DNA ligase buffer. Reactions were heat inactivated and ligated in 

equimolar ratio to SmaI cleaved and dephosphorylated pUC19. Ligations were 

transformed into chemically competent NEB10B E.coli and plated on Ampicillin Plates 

supplemented with 40µl X-Gal solution (Promega). White colonies were picked and 

prepared using GeneElute Plasmid Preperation kit (Sigma-Aldrich). 300ng of plasmid 

DNA was sequenced via DNASU’s Sanger Sequencing Core with primers flanking the 

A-site. 
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