Description
The existing minima for sample size and test length recommendations for DIMTEST (750 examinees and 25 items) are tied to features of the procedure that are no longer in use. The current version of DIMTEST uses a bootstrapping procedure to

The existing minima for sample size and test length recommendations for DIMTEST (750 examinees and 25 items) are tied to features of the procedure that are no longer in use. The current version of DIMTEST uses a bootstrapping procedure to remove bias from the test statistic and is packaged with a conditional covariance-based procedure called ATFIND for partitioning test items. Key factors such as sample size, test length, test structure, the correlation between dimensions, and strength of dependence were manipulated in a Monte Carlo study to assess the effectiveness of the current version of DIMTEST with fewer examinees and items. In addition, the DETECT program was also used to partition test items; a second feature of this study also compared the structure of test partitions obtained with ATFIND and DETECT in a number of ways. With some exceptions, the performance of DIMTEST was quite conservative in unidimensional conditions. The performance of DIMTEST in multidimensional conditions depended on each of the manipulated factors, and did suggest that the minima of sample size and test length can be made lower for some conditions. In terms of partitioning test items in unidimensional conditions, DETECT tended to produce longer assessment subtests than ATFIND in turn yielding different test partitions. In multidimensional conditions, test partitions became more similar and were more accurate with increased sample size, for factorially simple data, greater strength of dependence, and a decreased correlation between dimensions. Recommendations for sample size and test length minima are provided along with suggestions for future research.
Reuse Permissions
  • Downloads
    PDF (5.2 MB)

    Details

    Title
    • Sample size and test length minima for DIMTEST with conditional covariance-based subtest selection
    Contributors
    Date Created
    2012
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.A., Arizona State University, 2012
    • bibliography
      Includes bibliographical references (p. 89-91)
    • Field of study: Educational psychology

    Citation and reuse

    Statement of Responsibility

    by Derek Fay

    Machine-readable links