Safe-to-fail infrastructure for resilient cities under non-stationary climate

156772-Thumbnail Image.png
Description

Motivated by the need for cities to prepare and be resilient to unpredictable future weather conditions, this dissertation advances a novel infrastructure development theory of “safe-to-fail” to increase the adaptive capacity of cities to climate change. Current infrastructure development is

Motivated by the need for cities to prepare and be resilient to unpredictable future weather conditions, this dissertation advances a novel infrastructure development theory of “safe-to-fail” to increase the adaptive capacity of cities to climate change. Current infrastructure development is primarily reliant on identifying probable risks to engineered systems and making infrastructure reliable to maintain its function up to a designed system capacity. However, alterations happening in the earth system (e.g., atmosphere, oceans, land, and ice) and in human systems (e.g., greenhouse gas emission, population, land-use, technology, and natural resource use) are increasing the uncertainties in weather predictions and risk calculations and making it difficult for engineered infrastructure to maintain intended design thresholds in non-stationary future. This dissertation presents a new way to develop safe-to-fail infrastructure that departs from the current practice of risk calculation and is able to manage failure consequences when unpredicted risks overwhelm engineered systems.

This dissertation 1) defines infrastructure failure, refines existing safe-to-fail theory, and compares decision considerations for safe-to-fail vs. fail-safe infrastructure development under non-stationary climate; 2) suggests an approach to integrate the estimation of infrastructure failure impacts with extreme weather risks; 3) provides a decision tool to implement resilience strategies into safe-to-fail infrastructure development; and, 4) recognizes diverse perspectives for adopting safe-to-fail theory into practice in various decision contexts.

Overall, this dissertation advances safe-to-fail theory to help guide climate adaptation decisions that consider infrastructure failure and their consequences. The results of this dissertation demonstrate an emerging need for stakeholders, including policy makers, planners, engineers, and community members, to understand an impending “infrastructure trolley problem”, where the adaptive capacity of some regions is improved at the expense of others. Safe-to-fail further engages stakeholders to bring their knowledge into the prioritization of various failure costs based on their institutional, regional, financial, and social capacity to withstand failures. This approach connects to sustainability, where city practitioners deliberately think of and include the future cost of social, environmental and economic attributes in planning and decision-making.

Date Created
2018
Agent

Robustness and Extensibility in Infrastructure Systems

141356-Thumbnail Image.png
Description

Resilient infrastructure research has produced a myriad of conflicting definitions and analytic frameworks, highlighting the difficulty of creating a foundational theory that informs disciplines as diverse as business, engineering, ecology, and disaster risk reduction. Nevertheless, there is growing agreement that

Resilient infrastructure research has produced a myriad of conflicting definitions and analytic frameworks, highlighting the difficulty of creating a foundational theory that informs disciplines as diverse as business, engineering, ecology, and disaster risk reduction. Nevertheless, there is growing agreement that resilience is a desirable property for infrastructure systems – i.e., that more resilience is always better. Unfortunately, this view ignore that the fact that a single concept of resilience is insufficient to ensure effective performance under diverse and volatile stresses. Scholarship in resilience engineering has identified at least four irreducible resilience concepts, including: rebound, robustness, graceful extensibility, and sustained adaptability.

In this paper, we clarify the meaning of the word resilience and its use, explain the advantages of the pluralistic approach to advancing resilience theory, and clarify two of the four conceptual understandings: robustness and graceful extensibility. Furthermore, we draw upon examples in electric power, transportation, and water systems that illustrate positive and negative cases of resilience in infrastructure management and crisis response. The following conclusions result:

1. Robustness and graceful extensibility are different strategies for resilience that draw upon different system characteristics.
2. Neither robustness nor extensibility can prevent all hazards.
3. While systems can perform both strategies simultaneously, their drawbacks are different.

Robust infrastructure systems fail when policies and procedures become stale, or when faced with overwhelming surprise. Extensible systems fail when a lack of coordination or exhaustion of resources results from decompensation. Consequently, resilience is found neither only in robustness, nor only in extensibility, but in the capacity apply both and switch between them at will.

Date Created
2017-07-17
Agent