Lightning Audio: Plasma Arc Speaker Technology and Marketability

136974-Thumbnail Image.png
Description
The Lightning Audio capstone group, consisting of Brian Boerhinger, Rahul Nandan, Jaime Ramirez, and Niccolo Magnotto (myself), united in the effort to prove the feasibility of a consumer grade plasma arc speaker. This was achieved in group's prototype design, which

The Lightning Audio capstone group, consisting of Brian Boerhinger, Rahul Nandan, Jaime Ramirez, and Niccolo Magnotto (myself), united in the effort to prove the feasibility of a consumer grade plasma arc speaker. This was achieved in group's prototype design, which demonstrates the potential for a refined product in its conventional interfacing, casing, size, safety, and aesthetics. If the potential for an excellent ionization-based loudspeaker product were realized, it would be highly profitable in its reasonable cost of production, novelty, and place in a large and fitting market.
Date Created
2014-05
Agent

Lightning Audio Plasma Arc Speakers: Transformer Operation

136956-Thumbnail Image.png
Description
Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker.

Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker. The plasma arc speaker is a project that explores the use of high voltage arcs to produce audible sound amplification. The goal of the project is to prove feasibility that a consumer grade plasma arc speaker could exist in the marketplace. The inherent challenge was producing audio amplification that could compete with current loudspeakers all while ensuring user safety from the hazards of high voltage and current shock, electromagnetic damage, and ozone from the plasma arc. The project has thus far covered the process of design conception to realization of a prototype device. The operation of the plasma arc speaker is based on the high voltage plasma arc created between two electrodes. The plasma arc rapidly heats and cools the surrounding air creating changes in air pressure which vibrate the air. These pockets of pressurized air are heard as sound. The circuit incorporates a flyback transformer responsible for creating the high voltage necessary for arcing.
Date Created
2014-05
Agent

Lightning Audio Plasma Arc Speakers: Transformer Operation

136937-Thumbnail Image.png
Description
Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker.

Lighting Audio is a team of senior electrical engineering students at the Arizona State University mentored by Director Emeritus Professor Ronald Roedel and 2nd Committee Member George Karady attempting to prove the feasibility of a consumer grade plasma arc speaker. The plasma arc speaker is a project that explores the use of high voltage arcs to produce audible sound amplification. The goal of the project is to prove feasibility that a consumer grade plasma arc speaker could exist in the marketplace. The inherent challenge was producing audio amplification that could compete with current loudspeakers all while ensuring user safety from the hazards of high voltage and current shock, electromagnetic damage, and ozone from the plasma arc. The project has thus far covered the process of design conception to realization of a prototype device. The operation of the plasma arc speaker is based on the high voltage plasma arc created between two electrodes. The plasma arc rapidly heats and cools the surrounding air creating changes in air pressure which vibrate the air. These pockets of pressurized air are heard as sound. The circuit incorporates a flyback transformer responsible for creating the high voltage necessary for arcing.
Date Created
2014-05
Agent

Signal Modulation in a High Voltage Plasma

136922-Thumbnail Image.png
Description
A high voltage plasma arc can be created and sustained in air by subjecting the gases to an electric field with high voltage potential, causing ionization. The internal energy of the ionized gases can be transferred to corresponding pressure waves

A high voltage plasma arc can be created and sustained in air by subjecting the gases to an electric field with high voltage potential, causing ionization. The internal energy of the ionized gases can be transferred to corresponding pressure waves when the matter involved switches between the gaseous and plasma states. By pulse-width modulating a transformer driving signal, the transfer of internal electrical energy to resonating pressure waves may be controlled. Audio wave input to the driver signal can then be modulated into the carrier wave and be used to determine the width of each pulse in the plasma, thus reconstructing the audio signal as pressure, or sound waves, as the plasma arc switches on and off. The result will be the audio waveform resonating out of the plasma arc as audible sound, and thus creating a plasma loudspeaker. Theory of operation was tested through construction of a plasma arc speaker, and resultant audio playback was analyzed. This analysis confirmed accurate reproduction of audio signal in audible sound.
Date Created
2014-05
Agent