SYNTHESIS OF NOVEL ANTI-TUMOR AGENTS UTILIZING AN EXTENDED VINYLOGOUS AMIDINE SYSTEM
Description
Continuing work has been done on a novel class of anti-cancer drugs employing a vinylogous extended amidine system functionalized into benzimidazole ring. Three new derivatives, utilizing a true sugar mimic at the N1-position, have been synthesized. Compounds 6-amino-1-[2-(2-hydroxyethoxy)ethyl-4-imino-2,5-dimethyl-1H-benzimidazole- 7-one (5), 6-amino-1-[2-(2-hydroxysulfonoethoxy)ethyl-4-imino-2,5-dimethyl-1H-benzimidazole-7-one (6), and 6-amino-1-[2-(2-hydroxysulfonoethoxy)ethyl-4-methylimino-2,5-dimethyl-1H-benzimidazole-7-one (7) have been synthesized utilizing similar protocols used in the synthesis of previously screened anti-tumor drugs produced by this laboratory. Compounds (5) and (6) have undergone screening similar to the National Cancer Institute’s (NCIs) Developmental Therapeutic Program (DTP), performed by Dr. Dan LaBarbera at the University of Boston. Both compounds show high cytotoxicity, with complete cell death at 5 µM and bioactive concentrations in the low nanomolar concentrations; more complete data is forthcoming. The proposed mechanism of action is through inhibition of p90RSK 1-2 which is responsible for the phosphorylation of Bcl-2 associated death promoter (BAD), a key metabolite in directing the onset of apoptosis. Future directions of next generation derivatives include modifying the 2-position of the benzimidazole ring into a halogenating or alkylating agent and possibly replacing the methanesulfonate with a phosphate group. This research is being published in the Journal of Medicinal Chemistry.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2014-05
Agent
- Author (aut): Morrison, Zachary Tyler
- Thesis director: Skibo, Edward
- Committee member: Lefler, Scott
- Contributor (ctb): Barrett, The Honors College
- Contributor (ctb): Department of Chemistry and Biochemistry