Modeling, analysis, and efficient resource allocation in cyber-physical systems and critical infrastructure networks

155052-Thumbnail Image.png
Description
The critical infrastructures of the nation are a large and complex network of human, physical and cyber-physical systems. In recent times, it has become increasingly apparent that individual critical infrastructures, such as the power and communication networks, do not operate

The critical infrastructures of the nation are a large and complex network of human, physical and cyber-physical systems. In recent times, it has become increasingly apparent that individual critical infrastructures, such as the power and communication networks, do not operate in isolation, but instead are part of a complex interdependent ecosystem where a failure involving a small set of network entities can trigger a cascading event resulting in the failure of a much larger set of entities through the failure propagation process.

Recognizing the need for a deeper understanding of the interdependent relationships between such critical infrastructures, several models have been proposed and analyzed in the last few years. However, most of these models are over-simplified and fail to capture the complex interdependencies that may exist between critical infrastructures. To overcome the limitations of existing models, this dissertation presents a new model -- the Implicative Interdependency Model (IIM) that is able to capture such complex interdependency relations. As the potential for a failure cascade in critical interdependent networks poses several risks that can jeopardize the nation, this dissertation explores relevant research problems in the interdependent power and communication networks using the proposed IIM and lays the foundations for further study using this model.

Apart from exploring problems in interdependent critical infrastructures, this dissertation also explores resource allocation techniques for environments enabled with cyber-physical systems. Specifically, the problem of efficient path planning for data collection using mobile cyber-physical systems is explored. Two such environments are considered: a Radio-Frequency IDentification (RFID) environment with mobile “Tags” and “Readers”, and a sensor data collection environment where both the sensors and the data mules (data collectors) are mobile.

Finally, from an applied research perspective, this dissertation presents Raptor, an advanced network planning and management tool for mitigating the impact of spatially correlated, or region based faults on infrastructure networks. Raptor consolidates a wide range of studies conducted in the last few years on region based faults, and provides an interface for network planners, designers and operators to use the results of these studies for designing robust and resilient networks in the presence of spatially correlated faults.
Date Created
2016
Agent

Optimal resource allocation in social and critical infrastructure networks

155032-Thumbnail Image.png
Description
We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation

We live in a networked world with a multitude of networks, such as communication networks, electric power grid, transportation networks and water distribution networks, all around us. In addition to such physical (infrastructure) networks, recent years have seen tremendous proliferation of social networks, such as Facebook, Twitter, LinkedIn, Instagram, Google+ and others. These powerful social networks are not only used for harnessing revenue from the infrastructure networks, but are also increasingly being used as “non-conventional sensors” for monitoring the infrastructure networks. Accordingly, nowadays, analyses of social and infrastructure networks go hand-in-hand. This dissertation studies resource allocation problems encountered in this set of diverse, heterogeneous, and interdependent networks. Three problems studied in this dissertation are encountered in the physical network domain while the three other problems studied are encountered in the social network domain.

The first problem from the infrastructure network domain relates to distributed files storage scheme with a goal of enhancing robustness of data storage by making it tolerant against large scale geographically-correlated failures. The second problem relates to placement of relay nodes in a deployment area with multiple sensor nodes with a goal of augmenting connectivity of the resulting network, while staying within the budget specifying the maximum number of relay nodes that can be deployed. The third problem studied in this dissertation relates to complex interdependencies that exist between infrastructure networks, such as power grid and communication network. The progressive recovery problem in an interdependent network is studied whose goal is to maximize system utility over the time when recovery process of failed entities takes place in a sequential manner.

The three problems studied from the social network domain relate to influence propagation in adversarial environment and political sentiment assessment in various states in a country with a goal of creation of a “political heat map” of the country. In the first problem of the influence propagation domain, the goal of the second player is to restrict the influence of the first player, while in the second problem the goal of the second player is to have a larger market share with least amount of initial investment.
Date Created
2016
Agent

Toward customizable multi-tenant SaaS applications

154909-Thumbnail Image.png
Description
Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid

Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically scalable, virtualized manner. However, the current industrial cloud computing implementations promote segregation among different cloud providers, which leads to user lockdown because of prohibitive migration cost. On the other hand, Service-Orented Computing (SOC) including service-oriented architecture (SOA) and Web Services (WS) promote standardization and openness with its enabling standards and communication protocols. This thesis proposes a Service-Oriented Cloud Computing Architecture by combining the best attributes of the two paradigms to promote an open, interoperable environment for cloud computing development. Mutil-tenancy SaaS applicantions built on top of SOCCA have more flexibility and are not locked down by a certain platform. Tenants residing on a multi-tenant application appear to be the sole owner of the application and not aware of the existence of others. A multi-tenant SaaS application accommodates each tenant’s unique requirements by allowing tenant-level customization. A complex SaaS application that supports hundreds, even thousands of tenants could have hundreds of customization points with each of them providing multiple options, and this could result in a huge number of ways to customize the application. This dissertation also proposes innovative customization approaches, which studies similar tenants’ customization choices and each individual users behaviors, then provides guided semi-automated customization process for the future tenants. A semi-automated customization process could enable tenants to quickly implement the customization that best suits their business needs.
Date Created
2016
Agent

Mobile cloud application framework and offloading strategies

154901-Thumbnail Image.png
Description
Mobile Cloud computing has shown its capability to support mobile devices for

provisioning computing, storage and communication resources. A distributed mobile

cloud service system called "POEM" is presented to manage the mobile cloud resource

and compose mobile cloud applications. POEM considers resource management

Mobile Cloud computing has shown its capability to support mobile devices for

provisioning computing, storage and communication resources. A distributed mobile

cloud service system called "POEM" is presented to manage the mobile cloud resource

and compose mobile cloud applications. POEM considers resource management not

only between mobile devices and clouds, but also among mobile devices. It implements

both computation offloading and service composition features. The proposed POEM

solution is demonstrated by using OSGi and XMPP techniques.

Offloading is one major type of collaborations between mobile device and cloud

to achieve less execution time and less energy consumption. Offloading decisions for

mobile cloud collaboration involve many decision factors. One of important decision

factors is the network unavailability. This report presents an offloading decision model

that takes network unavailability into consideration. The application execution time

and energy consumption in both ideal network and network with some unavailability

are analyzed. Based on the presented theoretical model, an application partition

algorithm and a decision module are presented to produce an offloading decision that

is resistant to network unavailability.

Existing offloading models mainly focus on the one-to-one offloading relation. To

address the multi-factor and multi-site offloading mobile cloud application scenarios,

a multi-factor multi-site risk-based offloading model is presented, which abstracts the

offloading impact factors as for offloading benefit and offloading risk. The offloading

decision is made based on a comprehensive offloading risk evaluation. This presented

model is generic and expendable. Four offloading impact factors are presented to show

the construction and operation of the presented offloading model, which can be easily

extended to incorporate more factors to make offloading decision more comprehensive.

The overall offloading benefits and risks are aggregated based on the mobile cloud

users' preference.

The offloading topology may change during the whole application life. A set of

algorithms are presented to address the service topology reconfiguration problem in

several mobile cloud representative application scenarios, i.e., they are modeled as

finite horizon scenarios, infinite horizon scenarios, and large state space scenarios to

represent ad hoc, long-term, and large-scale mobile cloud service composition scenarios,

respectively.
Date Created
2016
Agent

Anonymity protection and access control in mobile network environment

154873-Thumbnail Image.png
Description
Wireless communication technologies have been playing an important role in modern society. Due to its inherent mobility property, wireless networks are more vulnerable to passive attacks than traditional wired networks. Anonymity, as an important issue in mobile network environment, serves

Wireless communication technologies have been playing an important role in modern society. Due to its inherent mobility property, wireless networks are more vulnerable to passive attacks than traditional wired networks. Anonymity, as an important issue in mobile network environment, serves as the first topic that leads to all the research work presented in this manuscript. Specifically, anonymity issue in Mobile Ad hoc Networks (MANETs) is discussed with details as the first section of research.



To thoroughly study on this topic, the presented work approaches it from an attacker's perspective. Under a perfect scenario, all the traffic in a targeted MANET exhibits the communication relations to a passive attacker. However, localization errors pose a significant influence on the accuracy of the derived communication patterns. To handle such issue, a new scheme is proposed to generate super nodes, which represent the activities of user groups in the target MANET. This scheme also helps reduce the scale of monitoring work by grouping users based on their behaviors.



The first part of work on anonymity in MANET leads to the thought on its major cause. The link-based communication pattern is a key contributor to the success of the traffic analysis attack. A natural way to circumvent such issue is to use link-less approaches. Information Centric Networking (ICN) is a typical instance of such kind. Its communication pattern is able to overcome the anonymity issue with MANET. However, it also comes with its own shortcomings. One of them is access control enforcement. To tackle this issue, a new naming scheme for contents transmitted in ICN networks is presented. This scheme is based on a new Attribute-Based Encryption (ABE) algorithm. It enforces access control in ICN with minimum requirements on additional network components.



Following the research work on ABE, an important function, delegation, exhibits a potential security issue. In traditional ABE schemes, Ciphertext-Policy ABE (CP-ABE), a user is able to generate a subset of authentic attribute key components for other users using delegation function. This capability is not monitored or controlled by the trusted third party (TTP) in the cryptosystem. A direct threat caused from this issue is that any user may intentionally or unintentionally lower the standards for attribute assignments. Unauthorized users/attackers may be able to obtain their desired attributes through a delegation party instead of directly from the TTP. As the third part of work presented in this manuscript, a three-level delegation restriction architecture is proposed. Furthermore, a delegation restriction scheme following this architecture is also presented. This scheme allows the TTP to have full control on the delegation function of all its direct users.
Date Created
2016
Agent

Surface registration and indexing for brain morphometry analysis with conformal geometry

154380-Thumbnail Image.png
Description
In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures,

In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand, given the enormous amount of data being generated daily, it is still challenging to develop effective and efficient surface-based methods to analyze brain shape morphometry. There are two major problems in surface-based shape analysis research: correspondence and similarity. This dissertation covers both topics by proposing novel surface registration and indexing algorithms based on conformal geometry for brain morphometry analysis.

First, I propose a surface fluid registration system, which extends the traditional image fluid registration to surfaces. With surface conformal parameterization, the complexity of the proposed registration formula has been greatly reduced, compared to prior methods. Inverse consistency is also incorporated to drive a symmetric correspondence between surfaces. After registration, the multivariate tensor-based morphometry (mTBM) is computed to measure local shape deformations. The algorithm was applied to study hippocampal atrophy associated with Alzheimer's disease (AD).

Next, I propose a ventricular surface registration algorithm based on hyperbolic Ricci flow, which computes a global conformal parameterization for each ventricular surface without introducing any singularity. Furthermore, in the parameter space, unique hyperbolic geodesic curves are introduced to guide consistent correspondences across subjects, a technique called geodesic curve lifting. Tensor-based morphometry (TBM) statistic is computed from the registration to measure shape changes. This algorithm was applied to study ventricular enlargement in mild cognitive impatient (MCI) converters.

Finally, a new shape index, the hyperbolic Wasserstein distance, is introduced. This algorithm computes the Wasserstein distance between general topological surfaces as a shape similarity measure of different surfaces. It is based on hyperbolic Ricci flow, hyperbolic harmonic map, and optimal mass transportation map, which is extended to hyperbolic space. This method fills a gap in the Wasserstein distance study, where prior work only dealt with images or genus-0 closed surfaces. The algorithm was applied in an AD vs. control cortical shape classification study and achieved promising accuracy rate.
Date Created
2016
Agent

Privacy-preserving mobile crowd sensing

154329-Thumbnail Image.png
Description
The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile

The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile Crowd Sensing (MCS) from concept to reality. MCS aims to outsource sensing data collection to mobile users and it could revolutionize the traditional ways of sensing data collection and processing. In the meantime, cloud computing provides cloud-backed infrastructures for mobile devices to provision their capabilities with network access. With enormous computational and storage resources along with sufficient bandwidth, it functions as the hub to handle the sensing service requests from sensing service consumers and coordinate sensing task assignment among eligible mobile users to reach a desired quality of sensing service. This paper studies the problem of sensing task assignment to mobile device owners with specific spatio-temporal traits to minimize the cost and maximize the utility in MCS while adhering to QoS constraints. Greedy approaches and hybrid solutions combined with bee algorithms are explored to address the problem.

Moreover, the privacy concerns arise with the widespread deployment of MCS from both the data contributors and the sensing service consumers. The uploaded sensing data, especially those tagged with spatio-temporal information, will disclose the personal information of the data contributors. In addition, the sensing service requests can reveal the personal interests of service consumers. To address the privacy issues, this paper constructs a new framework named Privacy-Preserving Mobile Crowd Sensing (PP-MCS) to leverage the sensing capabilities of ubiquitous mobile devices and cloud infrastructures. PP-MCS has a distributed architecture without relying on trusted third parties for privacy-preservation. In PP-MCS, the sensing service consumers can retrieve data without revealing the real data contributors. Besides, the individual sensing records can be compared against the aggregation result while keeping the values of sensing records unknown, and the k-nearest neighbors could be approximately identified without privacy leaks. As such, the privacy of the data contributors and the sensing service consumers can be protected to the greatest extent possible.
Date Created
2016
Agent

Modeling, simulation and analysis for software-as-service in cloud

154217-Thumbnail Image.png
Description
Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery

Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and virtualized manner. Computer Simulations are widely utilized to analyze the behaviors of software and test them before fully implementations. Simulation can further benefit SaaS application in a cost-effective way taking the advantages of cloud such as customizability, configurability and multi-tendency.

This research introduces Modeling, Simulation and Analysis for Software-as-Service in Cloud. The researches cover the following topics: service modeling, policy specification, code generation, dynamic simulation, timing, event and log analysis. Moreover, the framework integrates current advantages of cloud: configurability, Multi-Tenancy, scalability and recoverability.

The following chapters are provided in the architecture:

Multi-Tenancy Simulation Software-as-a-Service.

Policy Specification for MTA simulation environment.

Model Driven PaaS Based SaaS modeling.

Dynamic analysis and dynamic calibration for timing analysis.

Event-driven Service-Oriented Simulation Framework.

LTBD: A Triage Solution for SaaS.
Date Created
2015
Agent

Adaptive sampling and learning in recommendation systems

154168-Thumbnail Image.png
Description
This thesis studies recommendation systems and considers joint sampling and learning. Sampling in recommendation systems is to obtain users' ratings on specific items chosen by the recommendation platform, and learning is to infer the unknown ratings of users to items

This thesis studies recommendation systems and considers joint sampling and learning. Sampling in recommendation systems is to obtain users' ratings on specific items chosen by the recommendation platform, and learning is to infer the unknown ratings of users to items given the existing data. In this thesis, the problem is formulated as an adaptive matrix completion problem in which sampling is to reveal the unknown entries of a $U\times M$ matrix where $U$ is the number of users, $M$ is the number of items, and each entry of the $U\times M$ matrix represents the rating of a user to an item. In the literature, this matrix completion problem has been studied under a static setting, i.e., recovering the matrix based on a set of partial ratings. This thesis considers both sampling and learning, and proposes an adaptive algorithm. The algorithm adapts its sampling and learning based on the existing data. The idea is to sample items that reveal more information based on the previous sampling results and then learn based on clustering. Performance of the proposed algorithm has been evaluated using simulations.
Date Created
2015
Agent

Transfer Learning for BioImaging and Bilingual Applications

154086-Thumbnail Image.png
Description
Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled

Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled data from one or multiple related sources with different distributions. Due to its capability of migrating knowledge from related domains, transfer learning has shown to be effective for cross-domain learning problems. In this dissertation, I carry out research along this direction with a particular focus on designing efficient and effective algorithms for BioImaging and Bilingual applications. Specifically, I propose deep transfer learning algorithms which combine transfer learning and deep learning to improve image annotation performance. Firstly, I propose to generate the deep features for the Drosophila embryo images via pretrained deep models and build linear classifiers on top of the deep features. Secondly, I propose to fine-tune the pretrained model with a small amount of labeled images. The time complexity and performance of deep transfer learning methodologies are investigated. Promising results have demonstrated the knowledge transfer ability of proposed deep transfer algorithms. Moreover, I propose a novel Robust Principal Component Analysis (RPCA) approach to process the noisy images in advance. In addition, I also present a two-stage re-weighting framework for general domain adaptation problems. The distribution of source domain is mapped towards the target domain in the first stage, and an adaptive learning model is proposed in the second stage to incorporate label information from the target domain if it is available. Then the proposed model is applied to tackle cross lingual spam detection problem at LinkedIn’s website. Our experimental results on real data demonstrate the efficiency and effectiveness of the proposed algorithms.
Date Created
2015
Agent