Numerical Simulation of the Surface Brightness of Astrophysical Jets
Description
The goal of this thesis is to extend the astrophysical jet model created by Dr.
Gardner and Dr. Jones to model the surface brightness of astrophysical jets. We attempt to accomplish this goal by modeling the astrophysical jet HH30 in the spectral emission lines [SII] 6716Å, [OI] 6300Å, and [NII] 6583Å. In order to do so, we used the jet model to simulate the temperature and density of the jet to match observational data by Hartigan and Morse (2007). From these results, we derived the emissivities in these emission lines using Cloudy by Ferland et al. (2013). Then we used the emissivities to determine the surface brightness of the jet in these lines. We found that the simulated surface brightness agreed with the observational surface brightness and we conclude that the model could successfully be extended to model the surface brightness of a jet.
Gardner and Dr. Jones to model the surface brightness of astrophysical jets. We attempt to accomplish this goal by modeling the astrophysical jet HH30 in the spectral emission lines [SII] 6716Å, [OI] 6300Å, and [NII] 6583Å. In order to do so, we used the jet model to simulate the temperature and density of the jet to match observational data by Hartigan and Morse (2007). From these results, we derived the emissivities in these emission lines using Cloudy by Ferland et al. (2013). Then we used the emissivities to determine the surface brightness of the jet in these lines. We found that the simulated surface brightness agreed with the observational surface brightness and we conclude that the model could successfully be extended to model the surface brightness of a jet.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2016-12
Agent
- Author (aut): Vargas, Perry Bialek
- Thesis director: Gardner, Carl
- Committee member: Scannapieco, Evan
- Contributor (ctb): School of Mathematical and Statistical Sciences
- Contributor (ctb): School of Earth and Space Exploration
- Contributor (ctb): Barrett, The Honors College