CRISPR/Cas9 Mediated Mutation in the ATP-ase Domain of XPB to Study its Role in Pancreatic Ductal Adenocarcinoma

Description
Pancreatic ductal adenocarcinoma (PDAC) is a form of pancreatic cancer that affects the exocrine function of the pancreas. PDAC is often hard to diagnose and has shown to also be as difficult to treat. Xeroderma pigmentosum type B (XPB), is

Pancreatic ductal adenocarcinoma (PDAC) is a form of pancreatic cancer that affects the exocrine function of the pancreas. PDAC is often hard to diagnose and has shown to also be as difficult to treat. Xeroderma pigmentosum type B (XPB), is a protein can be found in Transcription Factor II Human (TFIIH). It is known to have ATP-ase and helicase activities. The ATP-ase activities could be used to regulate the transcription within super enhancer (SE) networks. Knocking out the ATP-ase activity in XPB in the same way that triptolide does would offer a more individualized therapeutic regiment. A loss of function mutation was tested to identify whether or not the mutation was present within the strand of DNA. In order to explore the role of XPB in pancreatic cancer, a knockout clone was made through the use of the CRISPR/Cas9 genome editing technology to induce a clone in exon 2 of XPB using a plasmid with Green Fluorescent Protein (GFP) selection marker. Once the clones were successfully made, they underwent testing through the use of a Surveyor Mutation Detection Kit for standard electrophoresis. The confirmation of a functional clone lead to GFP, which contained the mutation, being chosen for further testing be compared to the wild type GFP. After the GFP D54H mutation was chosen for further testing, it was then cultured from bacteria and wild type GFP and GFP D54H underwent a restriction enzyme digest. The digest resulted in showing that GFP and GFP D54H were the same on a larger level, and that one of the only ways to prove that the mutation was present was through amplification and analysis using the mutation detection kit.
Date Created
2017-05
Agent