The Comparison of Frontostriatal Tracts Between Adolescents with ADHD and a Typically Developing Adolescent Control Group

134068-Thumbnail Image.png
Description
The frontostriatal reward circuit serves an underlying role in reward processing, cognitive planning, and motor control in the context of achieving a goal. Furthermore, research suggests a relationship between the reward circuits and behavior expressed in Attention Deficit Hyperactivity Disorder

The frontostriatal reward circuit serves an underlying role in reward processing, cognitive planning, and motor control in the context of achieving a goal. Furthermore, research suggests a relationship between the reward circuits and behavior expressed in Attention Deficit Hyperactivity Disorder (ADHD); however, the specific structural differences of the reward circuits in those with ADHD remain ambiguous. Diffusion tensor imaging (DTI) techniques were used to analyze diffusion weighted magnetic resonance imaging (DWI) data in order to examine the structural connectivity of frontostriatal reward pathways in ADHD adolescents compared to typically developing (TD) adolescents. It was hypothesized that measures of impulsivity would be predicted by white matter tract integrity measures in frontostriatal tracts related to affective processing (ventromedial prefrontal cortex to ventral striatum, vmPFC) in adolescents with ADHD, and that there would be reduced tract integrity in tracts related to executive control (dorsolateral prefrontal and anterior cingulate cortex—dlPFC and ACC, respectively). Frontostriatal tracts as well as the hippocampus and amygdala were examined in relation to age and impulsivity using both correlation and regression models. Results indicated that impulsivity declined with age in the TD group while no significant trend was identified for the ADHD group. The hypotheses were not supported and results for both predictions on the affective and executive circuits showed opposite trends from what was expected.
Date Created
2017-12
Agent