Investigating the relationship between CA3 dendritic restructuring and CA1 dendritic complexity following chronic stress, BDNF downregulation, and a post-stress recovery period

134795-Thumbnail Image.png
Description
Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the

Chronic restraint stress leads to apical dendritic retraction in CA3 pyramidal neurons and often no quantifiable changes in CA1 dendritic complexity. When chronic stress ends, a post-stress recovery period results in an enhancement in CA3 dendritic complexity. We investigated the relationship between CA3 and CA1 pyramidal neurons to determine whether dendritic restructuring in CA3 neurons leads to region-specific changes in the dendritic complexity of CA1 neurons. Adult male Sprague-Dawley rats were restrained (wire mesh, 6h/d/21d) and brains were removed soon after restraint ended (Str-Imm) or after a 21d post-stress recovery period (Str-Rec). In addition, BDNF downregulation targeting the CA3 region prevents enhancement in dendritic complexity following recovery in chronically stressed rats, providing robust conditions to investigate the CA3-CA1 relationship. Consequently, rats were infused into the CA3 area with either an AAV vector with a coding sequence against BDNF (shRNA) or a sequence with no known mRNA complements (Scr). Apical and basal dendritic complexity of CA3 and CA1 was quantified by counting total dendritic bifurcations and dendritic intersections using the Sholl analysis (20 µm distances from soma). Please note that the quantification of the CA3 dendritic arbors was not part of this thesis project. The outcome of that investigation revealed that apical CA3 dendritic retraction was found in Str-Imm-Scr and Str-Rec-shRNA. For the CA1 apical area, gross dendritic bifurcation differences were not detected, but the Sholl quantification revealed regionally-enhanced dendritic complexity that varied by distance from the soma at the distal apical dendrites (Str-Imm-Scr) and proximal basal dendrites (Str-Rec-shRNA). For the latter, significant increases in basal branch points were detected with total branch point quantification method. Moreover, a correlation using all groups revealed a significant inverse relationship between CA3 apical dendritic complexity and CA1 basal dendritic complexity. The results demonstrate that chronic stress-induced CA3 apical dendritic retraction may relate to region-specific changes in CA1 dendritic complexity. The inability of past studies to detect changes in CA1 dendritic complexity may be due to the shortcoming of gross dendritic arbor measures in accounting for subtle region-specific alterations. To address this, the current study included a cohort with BDNF downregulated in the CA3 region. Overall, this suggests that decreased levels of BDNF in the hippocampus provide robust conditions in which changes to CA1 dendritic complexity can be detected.
Date Created
2016-12
Agent

Government Subsidization, Public Assistance, and the Socioeconomics of Type-Two Diabetes

134494-Thumbnail Image.png
Description
Type-two diabetes represents a pathological state of insulin resistance due to systemic, complex interactions between numerous identified and linked metabolic genes. According to current medical literature, the genetic predisposition to type-two diabetes, coupled with environmental risk-factors, such as poverty and

Type-two diabetes represents a pathological state of insulin resistance due to systemic, complex interactions between numerous identified and linked metabolic genes. According to current medical literature, the genetic predisposition to type-two diabetes, coupled with environmental risk-factors, such as poverty and poor dietary habits, further exacerbate the risk of developing the disease. My research investigated the hypothesis that government poverty programs are associated with the surge in type-two diabetes among people of low socioeconomic status. My research suggests that government subsidies for the Commodity Supplemental Food Program, Women Infants and Children, Supplemental Nutrition Assistance Program, National School Lunch Program, and corn production influence individual dietary choices that lead to consumption of excessive amounts of refined sugars and fats and a surge in the prevalence of obesity, known risk-factors for developing type-two diabetes. These policies and programs may directly or indirectly promote and incentivize diets with excessive refined sugars and fats. As such, current programs paradoxically contradict current medical literature and direct individual choices that have increased the known risk-factors for developing type-two diabetes. Future efforts should reassess poverty and agricultural subsidy programs in relation to medical recommendations for diabetes prevention. The enormous societal and economic burden associated with type-two diabetes calls for further research to assess the efficacy of current public policy and the allocation of government funds.
Date Created
2017-05
Agent

Early Life Stress: An Increased Risk of Schizophrenia through Activation of the Complement Component Pathway

134448-Thumbnail Image.png
Description
Schizophrenia is a debilitating psychiatric disorder with poorly understood genetic and environmental factors. An allelic variant of complement component 4 (C4), a protein first identified in innate immune response is strongly associated with schizophrenia. In the brain, activity

Schizophrenia is a debilitating psychiatric disorder with poorly understood genetic and environmental factors. An allelic variant of complement component 4 (C4), a protein first identified in innate immune response is strongly associated with schizophrenia. In the brain, activity of C4 leads to dendritic pruning, a process that may be causal in disease progression. Environmental factors, such as early life exposure to significant stressors also associate with increased risk of schizophrenia in later life. My hypothesis is that these factors do not act independently, but rather in tandem to influence disease etiology.
This hypothesis is supported by previous studies demonstrating that stress-induced elevation of glucocorticoids increases the transcription of C4. I propose that activated glucocorticoid receptors directly increase C4 protein expression as a transcription factor activator. Additionally, I propose that activated glucocorticoid receptors inhibit the expression of the transcription factor nuclear factor-light-chain-enhancer of activated B cells (NF-κB), thereby leading to decreased expression of the C4 inhibitor CUB and Sushi multiple domains 1 (CSMD1).
Glucocorticoid receptors and C4 are richly expressed in the hippocampus, a region critical in memory consolidation, spatial, and declarative memory. I propose that stress-induced upregulation of C4 activity in the hippocampus promotes excessive synaptic pruning, contributing to specific deficits and hippocampal shrinkage seen in schizophrenia. Stress exposure during fetal development and adolescence likely acts through the proposed mechanisms to increase hippocampal C4 activity and subsequent schizophrenia risk. These mechanisms may reveal novel interactions between environmental and genetic risk factors in the etiology of schizophrenia through complement activation.
Date Created
2017-05
Agent

Selenium Supplementation and Cardiovascular Outcome Markers in Hemodialysis Patients: An Evaluation of Bioelectrical Impedance

137704-Thumbnail Image.png
Description
Cardiovascular disease is one of the most deadly outcomes of end stage renal disease. Bioelectrical impedance is a intriguing, yet unproven method of measuring fluid buildup in the heart, and is marketed as a early diagnostic tool for onset of

Cardiovascular disease is one of the most deadly outcomes of end stage renal disease. Bioelectrical impedance is a intriguing, yet unproven method of measuring fluid buildup in the heart, and is marketed as a early diagnostic tool for onset of cardiovascular disease. In this study, selenium supplements were given to a cohort of dialysis patients in the Phoenix metro area and their fluid tolerance was measured with thoracic biolectrical impedance. BNP was used as a correlate to see if bioelectrical impedance was correlated with heart disease. The study found no correlation between BNP and bioelectrical impedance and thus was not an accurate diagnostic tool in a medical setting.
Date Created
2013-05
Agent

Diurnal Cortisol Rhythms and Sleeping Patterns in Adolescence: A Longitudinal Study of the Transition to College

137625-Thumbnail Image.png
Description
This study examined the cross-sectional and longitudinal associations among diurnal cortisol rhythms and sleeping patterns in adolescents. 79 participants completed the study over three days during the spring semester of their senior year in high school, and 76 of these

This study examined the cross-sectional and longitudinal associations among diurnal cortisol rhythms and sleeping patterns in adolescents. 79 participants completed the study over three days during the spring semester of their senior year in high school, and 76 of these subjects participated again over three days during the fall semester of their freshman year in college. They completed daily saliva samples and diary entries, while wearing an actigraph to obtain objective measurements of sleep duration and efficiency. Cross-sectionally, longer sleep duration was associated with a lower cortisol awakening response, a smaller area under the cortisol curve, and a steeper cortisol slope. Longitudinally, there was no significant relationship between sleep duration and these cortisol parameters. Moreover, sleep efficiency was not associated with cortisol parameters cross-sectionally nor longitudinally. Results suggest associations between concurrent sleep duration and cortisol patterns, and may have significant impact on understanding adolescents' physiological response to stress.
Date Created
2013-05
Agent

Fos Expression in Response to Nicotine and Social Reward in Adolescent Male Rats

137583-Thumbnail Image.png
Description
Previous findings from our lab have demonstrated that nicotine and social reward have synergistic effects when experienced together versus when experienced separately. The purpose of this experiment is to understand the neural mechanisms underlying this synergistic effect by quantifying Fos

Previous findings from our lab have demonstrated that nicotine and social reward have synergistic effects when experienced together versus when experienced separately. The purpose of this experiment is to understand the neural mechanisms underlying this synergistic effect by quantifying Fos protein, a marker for neural activation, in various brain regions. We utilized the conditioning place preference (CPP) model to assess reward. Four groups of adolescent male rats (n=120) were given either nicotine (Nic) (0.1 mg/kg/mL) or saline (Sal) and were placed in the CPP apparatus either with a social partner (Soc) or alone (Iso). Thus, groups were: 1.)Sal+Iso, 2).Sal+Soc, 3).Nic+Iso, 4).Nic+Soc. Brains of some the rats (n=40) were collected for Fos staining 90 minutes after the last conditioning session to obtain Fos data in response to direct exposure to the stimuli. The following regions were analyzed for Fos expression: central amygdala (CeA), medial amygdala (MeA), basolateral amygdala (BLA), nucleus accumbens core (NAcCore), and nucleus accumbens shell (NAcShell). Place preference changes occurred in socially-conditioned groups reflecting social reward and in nicotine-conditioned groups reflecting nicotine reward. As expected, the Sal+Iso control group failed to display a preference change. Fos data revealed a significant increase in Fos expression in the CeA, MeA, NAcCore and NAcShell for socially-conditioned animals and a significant decrease in the NAcCore for nicotine-conditioned groups. Experiencing both social and nicotine rewards together appeared to produce greater activation in the BLA. However, there was an increase in Fos expression in the negative control group relative to Nic+Iso group. The results of CPP suggest that social, nicotine and their combination are rewarding. The combination of the nicotine and social reward could have been more rewarding than social and nicotine separately, but the test was not sensitive to reward magnitude. The increase in Fos expression in the negative control group in the BLA could be due to isolation stress. Overall, these results suggest that these brain regions had greater activation to social reward.
Date Created
2013-05
Agent

Localization of the Organic Cation Transporters (OCT) and the Quantification of Organic Cation Transport and Serotonergic Gene Transcription in the Rat Brain

137532-Thumbnail Image.png
Description
The organic cation transporter 3 (OCT3) is a polyspecific monoamine transporter
found in the human and rat brain. In Rats, OCT3 is the only known monoamine transporter inhibited by physiological concentrations of corticosteroids. We hypothesized that CORT- mediated inhibition of OCT3

The organic cation transporter 3 (OCT3) is a polyspecific monoamine transporter
found in the human and rat brain. In Rats, OCT3 is the only known monoamine transporter inhibited by physiological concentrations of corticosteroids. We hypothesized that CORT- mediated inhibition of OCT3 blocks the clearance of serotonin (5-HT) leading to an increase 5-HT receptor-mediated signaling. In experiment 1, due to conflicting reports on the location of OCT3 mRNA in the rat brain, in situ hybridization was performed on brain tissue sections. RNA was extracted from rat brain tissue, reverse transcribed into cDNA, and then polymerase chain reaction (PCR) was performed to generate riboprobe templates. The riboprobe templates were then used for in vitro transcription of digoxigenin (DIG)-labeled riboprobes complementary to OCT3. In experiment 2, 12 rats from an identical cohort were exposed to a chronic restraint stress paradigm (two hours/day for seven days, STRESS group), while the other 12 remained in their home cages (CTRL group). Twenty-four hours after the last stressor, all animals were euthanized and their brains immediately removed and frozen. Bilateral tissue punches were collected from 300μm coronal sections from the CA1 region of the dorsal hippocampus, basolateral amygdala (BLA), and dorsomedial hypothalamus (DMH). The relative OCT2, OCT3, and 5HT2a mRNA levels from each tissue punch were determined via quantitative real-time polymerase chain reaction (qPCR). The results of experiment 1 confirmed the presence of OCT3 mRNA in the CA1, amygdala, and the DMH. The results of experiment 2 show that chronic restraint stress did not alter gene expression for 5-HT2A, OCT2, and OCT3. These data may help reveal new information involving OCT3’s role in the hippocampus, amygdala and DMH in regards to localization and mRNA expression levels after exposure to a stressor.
Date Created
2013-05
Agent

Dosage effects of highly selective D2 antagonist SV293 on drug-seeking behavior and locomotor activity

136985-Thumbnail Image.png
Description
Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose

Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor effects of using three varying doses (1.0, 3.0, and 5.6 mg/kg) of a new, highly selective D2 antagonist, SV293. These doses were tested across five different conditions that explore the effects of controls, SV293 by itself, and in combination with cocaine. These tests are designed to separately assess the effects of the antagonist between drug-seeking behaviors and locomotor activity. The cue tests showed that SV293 reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivational effects of cocaine-related cues. SV293 alone also reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivation for cocaine. Cocaine in combination with SV293 did not produce any significant effects on drug-seeking behavior, suggesting that SV293 did not alter the motivational effects of cocaine itself. Spontaneous locomotor activity tests with SV293 alone showed no reduction in locomotor activity; however, the addition of cocaine showed a significant decrease in locomotor activity at the high dose of SV293. Overall, the 5.6 mg/kg dose of SV293 decreases drug-seeking behavior elicited by cocaine-related cues and environmental stimuli, as well as cocaine-induced locomotor activity. This selective D2 antagonism could ultimately help elucidate the mechanisms of other dopamine receptors with particular emphasis on their involvement with drug addiction. Key words: cocaine, SV293, D2, antagonists, dopamine
Date Created
2014-05
Agent

Developmental Changes in Vascular Density of the Hypothalamic Paraventricular Nucleus Following Prenatal Exposure to Dexamethasone

136978-Thumbnail Image.png
Description
The goal of the studies described in this thesis was to determine the changes in vascular density in the paraventricular nucleus (PVN) of the hypothalamus following prenatal exposure to the synthetic glucocorticoid hormone, dexamethasone (DEX). DEX is a synthetic glucocorticoid

The goal of the studies described in this thesis was to determine the changes in vascular density in the paraventricular nucleus (PVN) of the hypothalamus following prenatal exposure to the synthetic glucocorticoid hormone, dexamethasone (DEX). DEX is a synthetic glucocorticoid used clinically in women at risk for preterm delivery or in preterm infants to promote proper pulmonary development in high-risk neonates. Prenatal exposure to glucocorticoids such as DEX may change the development of important brain regulatory centers such as the PVN, resulting in increased risk for diseases in adulthood.
Previous studies have demonstrated that the hypothalamus regulates neuroendocrine and autonomic function and behavior. Within the hypothalamus, the paraventricular nucleus (PVN) is an integratory node that contains neurons associated with the control of neuroendocrine and autonomic responses. The PVN also has one of the highest density of blood vessels within the brain. Alterations of normal PVN angiogenesis by dexamethasone could potentially result in long-term modifications of brain and endocrine functions.
Timed-pregnant Sprague Dawley female rats received DEX on gestational days 18-21 and the resulting progeny were sacrificed at Postnatal Day (PND) 0, 4, 14, and 21. A tomato lectin, Lycopersicon Esculentum labeled with DyLight594 was used to stain blood vessels in the PVN and scanning confocal microscopy was used to analyze the experimental brains for PVN blood vessel density
Analysis of data using a 3-way analysis of variance (ANOVA) with age, sex and treatment as main factors, showed a significant age effect in vascular density. Analysis of female data by 2-way ANOVA demonstrated a significant effect of age, but no treatment or interaction effects. Post-hoc analysis shows significant differences at PND 2, 4, 14, and 21 compared to PND0. A Student‘s t-test of a planned comparison on PND2 showed a significant reduction by DEX treatment (p < 0.05). Analysis of data from females, using 2-way ANOVA demonstrated a significant effect of age, but no treatment or interaction effects. Post-hoc analysis shows significant differences at PND 2, 4, 14, and 21 compared to PND0. A planned comparison at PND 2 using Student’s t-test indicated a significant reduction by dex treatment.
The results of these studies demonstrate that there is significant postnatal angiogenic programming and that the vascular density of the PVN is altered by prenatal dexamethasone administration at PND2. The time-course shows developmental fluctuations in vessel density that may prove to be physiologically significant for normal brain function and developmental programming of brain and behavior.
Date Created
2014-05
Agent

Bridge Program Literature Review and Cognitive Self-Efficacy Theory Analysis of the Arizona State University's Summer BioBridge Program

136109-Thumbnail Image.png
Description
Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develo

Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing successful programs. Though there are a multitude of theories on successful student development, a focus on self-efficacy is critical. Summer Bridge programs across the country as well as the Bio Bridge summer program at Arizona State University were studied alone and through the lens of Cognitive Self-Efficacy Theory as mentioned in Albert Bandura's "Perceived Self-Efficacy in Cognitive Development and Functioning." Cognitive Self-Efficacy Theory provides a framework for self-efficacy development in academic settings. An analysis of fifteen bridge programs found that a large majority focused on developing academic capabilities and often overlooked development of community and social efficacy. An even larger number failed to focus on personal psychology in managing self-debilitating thought patterns based on published goals. Further, Arizona State University's Bio Bridge program could not be considered successful at developing cognitive self-efficacy or increasing retention as data was inconclusive. However, Bio Bridge was tremendously successful at developing social efficacy and community among participants and faculty. Further research and better evaluative techniques need to be developed to understand the program's effectiveness in cognitive self-efficacy development and retention.
Date Created
2015-05
Agent