A High-Density 3D Microengineered Platform to Study the Role of Tumor-Stroma Interactions on Desmoplasia and Breast Cancer Progression

Description
Solid tumors advance from benign stage to a deadly metastatic state due to the complex interaction between cancer cells and tumor microenvironment (TME) including stromal cells and extracellular matrix (ECM). Multiple studies have demonstrated that ECM dysregulation is one of

Solid tumors advance from benign stage to a deadly metastatic state due to the complex interaction between cancer cells and tumor microenvironment (TME) including stromal cells and extracellular matrix (ECM). Multiple studies have demonstrated that ECM dysregulation is one of the critical hallmarks of cancer progression leading to formation of a desmoplastic microenvironment that participates in tumor progression. Cancer associated fibroblasts (CAFs) are the predominant stromal cell type that participates in desmoplasia by depositing matrix proteins and increasing ECM stiffness. Although the influence of matrix stiffness on enhanced tumorigenicity has been well studied, the biological understanding about the dynamic changes in ECM architecture and the role of cancer-stromal cell interaction on ECM remodeling is still limited.

In this dissertation, the primary goal was to develop a comprehensive cellular and molecular level understanding of ECM remodeling due to the interaction of breast tumor cells and CAFs. To that end, a novel three-dimensional (3D) high-density tumor-stroma model was fabricated in which breast tumor cells (MDA-MB-231 and MCF7) were spatially organized surrounded by CAF-embedded collagen-I hydrogel (Aim 1). Further the platform was integrated with atomic force microscopy to assess the dynamic changes in ECM composition and stiffness during active tumor invasion. The results established an essential role of crosstalk between breast tumor cells and CAFs in ECM remodeling. The studies were further extended by dissecting the mode of interaction between tumor cells and CAFs followed by characterization of the role of various tumor secreted factors on ECM remodeling (Aim 2). The results for the first time established a critical role of paracrine signaling between breast tumor cells and CAFs in modulating biophysical properties of ECM. More in-depth analysis highlighted the role of tumor secreted cytokines, specifically PDGF-AA/BB, on CAF-induced desmoplasia. In aim 3, the platform was further utilized to test the synergistic influence of anti-fibrotic drug (tranilast) in conjugation with chemotherapeutic drug (Doxorubicin) on desmoplasia and tumor progression in the presence of CAFs. Overall this dissertation provided an in-depth understanding on the impact of breast cancer-stromal cell interaction in modulating biophysical properties of the ECM and identified the crucial role of tumor secreted cytokines including PDGF-AA/BB on desmoplasia.
Date Created
2019
Agent

CRISPR Based Synthetic Transcription Factors: The Future of Transcriptional Therapeutics

132748-Thumbnail Image.png
Description
Pinpoint control over endogenous gene expression in vivo has long been a fevered dream for clinicians and researchers alike. With the recent repurposing of programmable, RNA-guided DNA endonucleases from the CRISPR bacterial immune system, this dream is becoming a powerful

Pinpoint control over endogenous gene expression in vivo has long been a fevered dream for clinicians and researchers alike. With the recent repurposing of programmable, RNA-guided DNA endonucleases from the CRISPR bacterial immune system, this dream is becoming a powerful reality. Engineered CRISPR based transcriptional regulators have enabled researchers to perturb endogenous gene expression in vivo, allowing for the therapeutic reprogramming of cell and tissue behavior. However, for this technology to be of maximal use, a variety of technological hurdles still need to be addressed. Here, we discuss recent advances and integrative strategies that can help pave the way towards a new class of transcriptional therapeutics.
Date Created
2019-05
Agent

Engineering Self-Organizing Biliary Organoids from Human Induced Pluripotent Stem Cells

134451-Thumbnail Image.png
Description
Cholangiocytes, the epithelial cells of the bile duct, are the origin of cholangiopathies which often necessitate liver transplants. Current progress in generating functional biliary organoids show potential for modelling cholangiopathies and validating therapeutic drugs. Organoids by groups Ogawa et al.

Cholangiocytes, the epithelial cells of the bile duct, are the origin of cholangiopathies which often necessitate liver transplants. Current progress in generating functional biliary organoids show potential for modelling cholangiopathies and validating therapeutic drugs. Organoids by groups Ogawa et al. and Sampaziotis et al. utilize soluble molecule induction, OP9 co-culture, and three-dimensional culture to achieve self-organizing tissues which express mature cholangiocyte markers and show cholangiocyte functionality. This thesis describes our efforts to establish a standard for functional PSC-derived bile duct tissues. By directing cell fate and patterning through external cues alone, we were able to produce CK19+ALB+ hepatoblast-like cells. These soluble molecule-induced cells also expressed EpCAM and CEBPA, suggesting the presence of early liver epithelial cells. However, inconsistent results and high levels of cell death with soluble molecule induction in early stages of differentiation prompted the development of a combinatory differentiation method which utilized multiple differentiation tools. We opted to combine transcription-factor triggered differentiation with soluble molecule-mediated differentiation to produce early biliary cells with the potential to develop into mature cholangiocytes. By combining genetic engineering through the activation of doxycycline-inducible GATA6 switch and microbead-mediated CXCR4 separation, we generated patterned tissues which expressed early biliary markers, CD146, CK19, and SOX9. In the future, three-dimensional cell culture and OP9 co-culture could improve our current results by facilitating 3D cellular self-organization and promoting NOTCH signaling for cholangiocyte maturation. Next steps for this research include optimizing media formulations, tracking gene expression over time, and testing the functionality of generated tissues.
Date Created
2017-05
Agent

Three-Dimensional Microfluidic Based Tumor-Vascular Model to Study Cancer Cell Invasion and Intravasation

155825-Thumbnail Image.png
Description
Breast cancer is the second leading cause of disease related death in women, contributing over

40,000 fatalities annually. The severe impact of breast cancer can be attributed to a poor

understanding of the mechanisms underlying cancer metastasis. A primary aspect of cancer

metastasis

Breast cancer is the second leading cause of disease related death in women, contributing over

40,000 fatalities annually. The severe impact of breast cancer can be attributed to a poor

understanding of the mechanisms underlying cancer metastasis. A primary aspect of cancer

metastasis includes the invasion and intravasation that results in cancer cells disseminating from

the primary tumor and colonizing distant organs. However, the integrated study of invasion and

intravasation has proven to be challenging due to the difficulties in establishing a combined tumor

and vascular microenvironments. Compared to traditional in vitro assays, microfluidic models

enable spatial organization of 3D cell-laden and/or acellular matrices to better mimic human

physiology. Thus, microfluidics can be leveraged to model complex steps of metastasis. The

fundamental aim of this thesis was to develop a three-dimensional microfluidic model to study the

mechanism through which breast cancer cells invade the surrounding stroma and intravasate into

outerlying blood vessels, with a primary focus on evaluating cancer cell motility and vascular

function in response to biochemical cues.

A novel concentric three-layer microfluidic device was developed, which allowed for

simultaneous observation of tumor formation, vascular network maturation, and cancer cell

invasion/intravasation. Initially, MDA-MB-231 disseminated from the primary tumor and invaded

the acellular collagen present in the adjacent second layer. The presence of an endothelial network

in the third layer of the device drastically increased cancer cell invasion. Furthermore, by day 6 of

culture, cancer cells could be visually observed intravasating into the vascular network.

Additionally, the effect of tumor cells on the formation of the surrounding microvascular network

within the vascular layer was evaluated. Results indicated that the presence of the tumor

significantly reduced vessel diameter and increased permeability, which correlates with prior in vivo

data. The novel three-layer platform mimicked the in vivo spatial organization of the tumor and its

surrounding vasculature, which enabled investigations of cell-cell interactions during cancer

invasion and intravasation. This approach will provide insight into the cascade of events leading up

to intravasation, which could provide a basis for developing more effective therapeutics.
Date Created
2017
Agent

Using Bioengineering Approaches to Generate a Three-Dimensional Human Induced Pluripotent Stem-Cell Based Model of Alzheimer's Disease

155686-Thumbnail Image.png
Description
The pathophysiology of Alzheimer’s disease (AD) remains difficult to precisely ascertain in part because animal models fail to fully recapitulate many aspects of the disease and postmortem studies do not allow for the study of the pathophysiology. In vitro models

The pathophysiology of Alzheimer’s disease (AD) remains difficult to precisely ascertain in part because animal models fail to fully recapitulate many aspects of the disease and postmortem studies do not allow for the study of the pathophysiology. In vitro models of AD generated with patient derived human induced pluripotent stem cells (hiPSCs) could provide new insight into disease mechanisms. Although many protocols exist to differentiate hiPSCs to neurons, standard practice relies on two-dimensional (2-D) systems, which do not accurately mimic the complexity and architecture of the in vivo brain microenvironment. This research aims to create three-dimensional (3-D) models of AD using hiPSCs, which would enhance the understanding of AD pathophysiology thereby, enabling the generation of effective therapeutics.
Date Created
2017
Agent