Characterizing Low Frequency Delay Mode Contamination of the Hydrogen Epoch of Reionization Array
Description
The Hydrogen Epoch of Reionization Array, HERA, is a radio telescope currently being built in South Africa that plans to observe the early universe, specifically the earliest period of star and galaxy formation. It plans to use a tool called a delay spectrum to separate signal emitted from this time from the much brighter radio foregrounds. It is the purpose of this paper to outline the method used to characterize the contamination of these delay spectra by bright emissions of radio here on Earth called radio frequency interference, RFI. The portion of the bandwidth containing the signal from the period of initial star formation was specifically examined. In order to receive usable data, the HERA commissioning team was assisted in the evaluation of the most recent data releases. On the first batch of usable data, flagging algorithms were run in order to mask all of the RFI present. A method of filling these masked values was determined, which allowed for the delay spectrum to be observed. Various methods of injecting RFI into the data were tested which portrayed the large dependence of the delay spectrum on its presence. Finally, the noise power was estimated in order to predict whether or not the limitations observed in the dynamic range were comparable to the noise floor. By examining the evolution of the delay spectrum's power as a range of noise power was introduced, there is a good amount of evidence that this limitation is in fact the noise floor. From this, we see that excision algorithms and interpolation used are capable of removing the effects of most all of the RFI contamination.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2019-05
Agent
- Author (aut): Bechtel, Shane Kirkpatrick
- Thesis director: Bowman, Judd
- Committee member: Jacobs, Daniel
- Committee member: Beardsley, Adam
- Contributor (ctb): School of Earth and Space Exploration
- Contributor (ctb): Barrett, The Honors College