Potential of Data-driven Approaches for Modeling Heat and Mass Convection Processes

168682-Thumbnail Image.png
Description
In convective heat transfer processes, heat transfer rate increases generally with a large fluid velocity, which leads to complex flow patterns. However, numerically analyzing the complex transport process and conjugated heat transfer requires extensive time and computing resources. Recently, data-driven

In convective heat transfer processes, heat transfer rate increases generally with a large fluid velocity, which leads to complex flow patterns. However, numerically analyzing the complex transport process and conjugated heat transfer requires extensive time and computing resources. Recently, data-driven approach has risen as an alternative method to solve physical problems in a computational efficient manner without necessitating the iterative computations of the governing physical equations. However, the research on data-driven approach for convective heat transfer is still in nascent stage. This study aims to introduce data-driven approaches for modeling heat and mass convection phenomena. As the first step, this research explores a deep learning approach for modeling the internal forced convection heat transfer problems. Conditional generative adversarial networks (cGAN) are trained to predict the solution based on a graphical input describing fluid channel geometries and initial flow conditions. A trained cGAN model rapidly approximates the flow temperature, Nusselt number (Nu) and friction factor (f) of a flow in a heated channel over Reynolds number (Re) ranging from 100 to 27750. The optimized cGAN model exhibited an accuracy up to 97.6% when predicting the local distributions of Nu and f. Next, this research introduces a deep learning based surrogate model for three-dimensional (3D) transient mixed convention in a horizontal channel with a heated bottom surface. Conditional generative adversarial networks (cGAN) are trained to approximate the temperature maps at arbitrary channel locations and time steps. The model is developed for a mixed convection occurring at the Re of 100, Rayleigh number of 3.9E6, and Richardson number of 88.8. The cGAN with the PatchGAN based classifier without the strided convolutions infers the temperature map with the best clarity and accuracy. Finally, this study investigates how machine learning analyzes the mass transfer in 3D printed fluidic devices. Random forests algorithm is hired to classify the flow images taken from semi-transparent 3D printed tubes. Particularly, this work focuses on laminar-turbulent transition process occurring in a 3D wavy tube and a straight tube visualized by dye injection. The machine learning model automatically classifies experimentally obtained flow images with an accuracy > 0.95.
Date Created
2022
Agent

Uncertainty Quantification and Prognostics using Bayesian Statistics and Machine Learning

168584-Thumbnail Image.png
Description
Uncertainty quantification is critical for engineering design and analysis. Determining appropriate ways of dealing with uncertainties has been a constant challenge in engineering. Statistical methods provide a powerful aid to describe and understand uncertainties. This work focuses on applying Bayesian

Uncertainty quantification is critical for engineering design and analysis. Determining appropriate ways of dealing with uncertainties has been a constant challenge in engineering. Statistical methods provide a powerful aid to describe and understand uncertainties. This work focuses on applying Bayesian methods and machine learning in uncertainty quantification and prognostics among all the statistical methods. This study focuses on the mechanical properties of materials, both static and fatigue, the main engineering field on which this study focuses. This work can be summarized in the following items: First, maintaining the safety of vintage pipelines requires accurately estimating the strength. The objective is to predict the reliability-based strength using nondestructive multimodality surface information. Bayesian model averaging (BMA) is implemented for fusing multimodality non-destructive testing results for gas pipeline strength estimation. Several incremental improvements are proposed in the algorithm implementation. Second, the objective is to develop a statistical uncertainty quantification method for fatigue stress-life (S-N) curves with sparse data.Hierarchical Bayesian data augmentation (HBDA) is proposed to integrate hierarchical Bayesian modeling (HBM) and Bayesian data augmentation (BDA) to deal with sparse data problems for fatigue S-N curves. The third objective is to develop a physics-guided machine learning model to overcome limitations in parametric regression models and classical machine learning models for fatigue data analysis. A Probabilistic Physics-guided Neural Network (PPgNN) is proposed for probabilistic fatigue S-N curve estimation. This model is further developed for missing data and arbitrary output distribution problems. Fourth, multi-fidelity modeling combines the advantages of low- and high-fidelity models to achieve a required accuracy at a reasonable computation cost. The fourth objective is to develop a neural network approach for multi-fidelity modeling by learning the correlation between low- and high-fidelity models. Finally, conclusions are drawn, and future work is outlined based on the current study.
Date Created
2022
Agent

Attributable Watermarking of Speech Generative Models

168441-Thumbnail Image.png
Description
Generative models in various domain such as images, speeches, and videos are beingdeveloped actively over the last decades and recent deep generative models are now capable of synthesizing multimedia contents are difficult to be distinguishable from authentic contents. Such capabilities cause concerns

Generative models in various domain such as images, speeches, and videos are beingdeveloped actively over the last decades and recent deep generative models are now capable of synthesizing multimedia contents are difficult to be distinguishable from authentic contents. Such capabilities cause concerns such as malicious impersonation, Intellectual property theft(IP theft) and copyright infringement. One method to solve these threats is to embedded attributable watermarking in synthesized contents so that user can identify the user-end models where the contents are generated from. This paper investigates a solution for model attribution, i.e., the classification of synthetic contents by their source models via watermarks embedded in the contents. Existing studies showed the feasibility of model attribution in the image domain and tradeoff between attribution accuracy and generation quality under the various adversarial attacks but not in speech domain. This work discuss the feasibility of model attribution in different domain and algorithmic improvements for generating user-end speech models that empirically achieve high accuracy of attribution while maintaining high generation quality. Lastly, several experiments are conducted show the tradeoff between attributability and generation quality under a variety of attacks on generated speech signals attempting to remove the watermarks.
Date Created
2021
Agent

Ultra-efficient and Scalable Uncertainty Quantification and Probabilistic Analysis for Heterogeneous Materials

168355-Thumbnail Image.png
Description
Ultra-fast 2D/3D material microstructure reconstruction and quantitative structure-property mapping are crucial components of integrated computational material engineering (ICME). It is particularly challenging for modeling random heterogeneous materials such as alloys, composites, polymers, porous media, and granular matters, which exhibit

Ultra-fast 2D/3D material microstructure reconstruction and quantitative structure-property mapping are crucial components of integrated computational material engineering (ICME). It is particularly challenging for modeling random heterogeneous materials such as alloys, composites, polymers, porous media, and granular matters, which exhibit strong randomness and variations of their material properties due to the hierarchical uncertainties associated with their complex microstructure at different length scales. Such uncertainties also exist in disordered hyperuniform systems that are statistically isotropic and possess no Bragg peaks like liquids and glasses, yet they suppress large-scale density fluctuations in a similar manner as in perfect crystals. The unique hyperuniform long-range order in these systems endow them with nearly optimal transport, electronic and mechanical properties. The concept of hyperuniformity was originally introduced for many-particle systems and has subsequently been generalized to heterogeneous materials such as porous media, composites, polymers, and biological tissues for unconventional property discovery. An explicit mixture random field (MRF) model is proposed to characterize and reconstruct multi-phase stochastic material property and microstructure simultaneously, where no additional tuning step nor iteration is needed compared with other stochastic optimization approaches such as the simulated annealing. The proposed method is shown to have ultra-high computational efficiency and only requires minimal imaging and property input data. Considering microscale uncertainties, the material reliability will face the challenge of high dimensionality. To deal with the so-called “curse of dimensionality”, efficient material reliability analysis methods are developed. Then, the explicit hierarchical uncertainty quantification model and efficient material reliability solvers are applied to reliability-based topology optimization to pursue the lightweight under reliability constraint defined based on structural mechanical responses. Efficient and accurate methods for high-resolution microstructure and hyperuniform microstructure reconstruction, high-dimensional material reliability analysis, and reliability-based topology optimization are developed. The proposed framework can be readily incorporated into ICME for probabilistic analysis, discovery of novel disordered hyperuniform materials, material design and optimization.
Date Created
2021
Agent

Game-theoretic Empathetic Parameter Estimation in Two-Vehicle Interaction

161749-Thumbnail Image.png
Description
Recent years, there has been many attempts with different approaches to the human-robot interaction (HRI) problems. In this paper, the multi-agent interaction is formulated as a differential game with incomplete information. To tackle this problem, the parameter estimation method is

Recent years, there has been many attempts with different approaches to the human-robot interaction (HRI) problems. In this paper, the multi-agent interaction is formulated as a differential game with incomplete information. To tackle this problem, the parameter estimation method is utilized to obtain the approximated solution in a real time basis. Previous studies in the parameter estimation made the assumption that the human parameters are known by the robot; but such may not be the case and there exists uncertainty in the modeling of the human rewards as well as human's modeling of the robot's rewards. The proposed method, empathetic estimation, is tested and compared with the ``non-empathetic'' estimation from the existing works. The case studies are conducted in an uncontrolled intersection with two agents attempting to pass efficiently. Results have shown that in the case of both agents having inconsistent belief of the other agent's parameters, the empathetic agent performs better at estimating the parameters and has higher reward values, which indicates the scenarios when empathy is essential: when agent's initial belief is mismatched from the true parameters/intent of the agents.
Date Created
2021
Agent

Vehicle Lateral Driving Stability Regions: Estimation, Analysis, and Control

161600-Thumbnail Image.png
Description
In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of

In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and stability-guaranteed vehicle lateral driving control, this dissertation presents three main contributions.First, a new method is proposed to estimate and analyze vehicle lateral driving stability regions, which provide a direct and intuitive demonstration for stability control of AGVs. Based on a four-wheel vehicle model and a nonlinear 2D analytical LuGre tire model, a local linearization method is applied to estimate vehicle lateral driving stability regions by analyzing vehicle local stability at each operation point on a phase plane. The obtained stability regions are conservative because both vehicle and tire stability are simultaneously considered. Such a conservative feature is specifically important for characterizing the stability properties of AGVs. Second, to analyze vehicle stability, two novel features of the estimated vehicle lateral driving stability regions are studied. First, a shifting vector is formulated to explicitly describe the shifting feature of the lateral stability regions with respect to the vehicle steering angles. Second, dynamic margins of the stability regions are formulated and applied to avoid the penetration of vehicle state trajectory with respect to the region boundaries. With these two features, the shiftable stability regions are feasible for real-time stability analysis. Third, to keep the vehicle states (lateral velocity and yaw rate) always stay in the shiftable stability regions, different control methods are developed and evaluated. Based on different vehicle control configurations, two dynamic sliding mode controllers (SMC) are designed. To better control vehicle stability without suffering chattering issues in SMC, a non-overshooting model predictive control is proposed and applied. To further save computational burden for real-time implementation, time-varying control-dependent invariant sets and time-varying control-dependent barrier functions are proposed and adopted in a stability-guaranteed vehicle control problem. Finally, to validate the correctness and effectiveness of the proposed theories, definitions, and control methods, illustrative simulations and experimental results are presented and discussed.
Date Created
2021
Agent

Modeling Human Adaptation with Game-theoretic Intention Decoding in Human-Robot Interactions

161595-Thumbnail Image.png
Description
With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions,

With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent interaction with humans. The requirement elicits an essential problem of how to properly model human behavior, especially when individuals are interacting or cooperating with each other. The major objective of this thesis is to utilize the human intention decoding method to help robots enhance their performance while interacting with humans. Preliminary work on integrating human intention estimation with an HRI scenario is shown to demonstrate the benefit. In order to achieve this goal, the research topic is divided into three phases. First, a novel method of an online measure of the human's reliance on the robot, which can be estimated through the intention decoding process from human actions,is described. An experiment that requires human participants to complete an object-moving task with a robot manipulator was conducted under different conditions of distractions. A relationship is discovered between human intention and trust while participants performed a familiar task with no distraction. This finding suggests a relationship between the psychological construct of trust and joint physical coordination, which bridges the human's action to its mental states. Then, a novel human collaborative dynamic model is introduced based on game theory and bounded rationality, which is a novel method to describe human dyadic behavior with the aforementioned theories. The mutual intention decoding process was also considered to inform this model. Through this model, the connection between the mental states of the individuals to their cooperative actions is indicated. A haptic interface is developed with a virtual environment and the experiments are conducted with 30 human subjects. The result suggests the existence of mutual intention decoding during the human dyadic cooperative behaviors. Last, the empirical results show that allowing agents to have empathy in inference, which lets the agents understand that others might have a false understanding of their intentions, can help to achieve correct intention inference. It has been verified that knowledge about vehicle dynamics was also important to correctly infer intentions. A new courteous policy is proposed that bounded the courteous motion using its inferred set of equilibrium motions. A simulation, which is set to reproduce an intersection passing case between an autonomous car and a human driving car, is conducted to demonstrate the benefit of the novel courteous control policy.
Date Created
2021
Agent

Physically Realizable Targeted Adversarial Attacks on Autonomous Driving

Description
Autonomous Driving (AD) systems are being researched and developed actively in recent days to solve the task of controlling the vehicles safely without human intervention. One method to solve such task is through deep Reinforcement Learning (RL) approach. In dee

Autonomous Driving (AD) systems are being researched and developed actively in recent days to solve the task of controlling the vehicles safely without human intervention. One method to solve such task is through deep Reinforcement Learning (RL) approach. In deep RL, the main objective is to find an optimal control behavior, often called policy performed by an agent, which is AD system in this case. This policy is usually learned through Deep Neural Networks (DNNs) based on the observations that the agent perceives along with rewards feedback received from environment.However, recent studies demonstrated the vulnerability of such control policies learned through deep RL against adversarial attacks. This raises concerns about the application of such policies to risk-sensitive tasks like AD. Previous adversarial attacks assume that the threats can be broadly realized in two ways: First one is targeted attacks through manipu- lation of the agent’s complete observation in real time and the other is untargeted attacks through manipulation of objects in environment. The former assumes full access to the agent’s observations at almost all time, while the latter has no control over outcomes of attack. This research investigates the feasibility of targeted attacks through physical adver- sarial objects in the environment, a threat that combines the effectiveness and practicality. Through simulations on one of the popular AD systems, it is demonstrated that a fixed optimal policy can be malfunctioned over time by an attacker e.g., performing an unintended self-parking, when an adversarial object is present. The proposed approach is formulated in such a way that the attacker can learn a dynamics of the environment and also utilizes common knowledge of agent’s dynamics to realize the attack. Further, several experiments are conducted to show the effectiveness of the proposed attack on different driving scenarios empirically. Lastly, this work also studies robustness of object location, and trade-off between the attack strength and attack length based on proposed evaluation metrics.
Date Created
2021
Agent

Novel Hierarchical N-point Polytope Functions for Quantifying, Modeling and Reconstructing Complex Heterogeneous Materials

161328-Thumbnail Image.png
Description
How to effectively and accurately describe, character and quantify the microstructure of the heterogeneous material and its 4D evolution process with time suffered from external stimuli or provocations is very difficult and challenging, but it’s significant and crucial for its

How to effectively and accurately describe, character and quantify the microstructure of the heterogeneous material and its 4D evolution process with time suffered from external stimuli or provocations is very difficult and challenging, but it’s significant and crucial for its performance prediction, processing, optimization and design. The goal of this research is to overcome these challenges by developing a series of novel hierarchical statistical microstructure descriptors called “n-point polytope functions” which is as known as Pn functions to quantify heterogeneous material’s microstructure and creating Pn functions related quantification methods which are Omega Metric and Differential Omega Metric to analyze its 4D processing.In this dissertation, a series of powerful programming tools are used to demonstrate that Pn functions can be used up to n=8 for chaotically scattered images which can hardly be distinguished by our naked eyes in chapter 3 to find or compare the potential configuration feature of structure such as symmetry or polygon geometry relation between the different targets when target’s multi-modal imaging is provided. These n-point statistic results calculated from Pn functions for features of interest in the microstructure can efficiently decompose the structural hidden features into a set of “polytope basis” to provide a concise, explainable, expressive, universal and efficient quantifying manner. In Chapter 4, the Pn functions can also be incorporated into material reconstruction algorithms readily for fast virtualizing 3D microstructure regeneration and also allowing instant material property prediction via analytical structure-property mappings for material design. In Chapter 5, Omega Metric and Differential Omega Metric are further created and used to provide a time-dependent reduced-dimension metric to analyze the 4D evaluation processing instead of using Pn functions directly because these 2 simplified methods can provide undistorted results to be easily compared. The real case of vapor-deposition alloy films analysis are implemented in this dissertation to demonstrate that One can use these methods to predict or optimize the design for 4D evolution of heterogeneous material. The advantages of the all quantification methods in this dissertation can let us economically and efficiently quantify, design, predict the microstructure and 4D evolution of the heterogeneous material in various fields.
Date Created
2021
Agent

Dynamics and Control of a Ground Vehicle Subjected to a Tire Blowout

161289-Thumbnail Image.png
Description
The tire blowout is potentially one of the most critical accidents that may occur on the road. Following a tire blowout, the mechanical behavior of the tire is extremely affected and the forces generating from the interaction of the tire

The tire blowout is potentially one of the most critical accidents that may occur on the road. Following a tire blowout, the mechanical behavior of the tire is extremely affected and the forces generating from the interaction of the tire and the ground are redistributed. This severe change in the mechanism of tire force generation influences the dynamic characteristics of the vehicle significantly. Thus, the vehicle loses its directional stability and has a risk of departing its lane and colliding with other vehicles or the guardrail. This work aims to further broaden our current knowledge of the vehicle dynamic response to a blowout scenario during both rectilinear and curvilinear motions. To that end, a fourteen degrees of freedom full vehicle model combined with the well-grounded Dugoff’s tire models is developed and validated using the high fidelity MSC Adams package. To examine the effect of the tire blowout on the dynamic behavior of the vehicle, a series of tests incorporating a tire blowout is conducted in both rectilinear and curvilinear maneuvers with different tire burst locations. It is observed that the reconstruction of the tire forces resulting from blowout leads to a substantial change in the dynamics of the vehicle as well as a severe directional instability and possibly a rollover accident. Consequently, a corrective safety control system utilizing a braking/traction torque actuation mechanism is designed. The basic idea of the stability controller is to produce a regulated amount of input torque on one or more wheels apart from the blown tire. The proposed novel control-oriented model eliminates the simplifying assumptions used in the design of such controllers. Furthermore, a double integrator was augmented to enhance the steady-state performance of the sliding mode closed-loop system. The chattering problem stemmed by the switching nature of the controller is diminished through tuning the slope of saturation function. Different apparatuses are used in terms of actuation, using an individual front actuator, utilizing multi-actuator, and using two-wheel braking torques successively. It is found that the proposed controllers are perfectly capable of stabilizing the vehicle and robustly track the desired trajectory in straight-line and cornering maneuvers.
Date Created
2021
Agent