Cellular and Molecular Mechanisms of Macrophage Fusion

161631-Thumbnail Image.png
Description
Macrophage fusion resulting multinucleated giant cells (MGCs) formation is associated with numerous chronic inflammatory diseases including the foreign body reaction to implanted biomaterials. Despite long-standing predictions, there have been attempts to use live-cell imaging to investigate the morphological features initiating

Macrophage fusion resulting multinucleated giant cells (MGCs) formation is associated with numerous chronic inflammatory diseases including the foreign body reaction to implanted biomaterials. Despite long-standing predictions, there have been attempts to use live-cell imaging to investigate the morphological features initiating macrophage fusion because macrophages do not fuse on clean glass required for most imaging techniques. Consequently, the mechanisms of macrophage fusion remain poorly understood. The goal of this research project was to characterize the early and late stages of macrophage multinucleation using fusogenic optical quality substrate. Live-cell imaging with phase-contrast and lattice-light sheet microscopy revealed that an actin-based protrusion initiates macrophage fusion. WASpdeficient macrophages and macrophages isolated from myeloid cell-specific Cdc42-/- mice fused at very low rates. In addition, inhibiting the Arp2/3 complex impaired both the formation of podosomes and macrophage fusion. Analyses of the late stages of macrophage multinucleation on biomaterials implanted into mice revealed novel actin-based zipper-like structures (ZLSs) formed at contact sites between MGCs. The model system that was developed for the induction of ZLSs in vitro allowed for the characterization of protein composition using confocal and super-resolution microscopy. Live-cell imaging demonstrated that ZLSs are dynamic formations undergoing continuous assembly and disassembly and that podosomes are precursors of these structures. It was further found that E-cadherin and nectin-2 are involved in ZLS formation by bridging the plasma membranes together. ii Macrophage fusion on implanted biomaterials inherently involves their adhesion to the implant surface. While biomaterials rapidly acquire a layer of host proteins, a biological substrate that is required for macrophage fusion is unknown. It was shown that mice with fibrinogen deficiency as well as mice expressing fibrinogen incapable of fibrin polymerization displayed a dramatic reduction of macrophage fusion on biomaterials. Furthermore, these mice were protected from the formation of the dense collagenous capsule enveloping the implant. It was also found that the main cell type responsible for the deposition of collagen in the capsule were mononuclear macrophages but not myofibroblasts. Together, these findings reveal a critical role of the actin cytoskeleton in macrophage fusion and identify potential targets to reduce the drawbacks of macrophage fusion on implanted biomaterials.
Date Created
2021
Agent

Immunostaining for Bacteria on Resin-embedded Honeybee Brains

Description
The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of

The brain is considered the crux of identity, yet human behavior may be influenced by bacteria in gut microbiomes. Honeybees can exchange bacteria through their many social behaviors, making their microbiomes, and the effect they have on honeybee behavior, of interest. There is recent evidence suggesting the presence of bacteria existing in human brains, which can be investigated in honeybee brains due to their well-documented structure. The purpose of this study is to establish if lipopolysaccharide—a molecule on bacteria membranes—is present in the honeybee brain and if it colocalizes with vitellogenin—an immune mediator. Additionally, this study also seeks to establish the efficacy of embedding tissue samples in resin and performing immunohistochemistry for vitellogenin and lipopolysaccharide on sections.
Date Created
2020-05
Agent

Characterization of Food Intake and Weight Gain Responses in Rats on a High Fat Diet

133689-Thumbnail Image.png
Description
With the influence of the Western Diet, obesity has become a rising problem in the country today. Western Diet is characterized by the overconsumption of processed food that is low in nutritional values and high in saturated fats. Study showed

With the influence of the Western Diet, obesity has become a rising problem in the country today. Western Diet is characterized by the overconsumption of processed food that is low in nutritional values and high in saturated fats. Study showed that every two out of three adults in the United States are either overweight or obese. Being obese increase the risk of many other disease such as diabetes, cardiovascular disease and insulin resistance. Besides being a great health concern, obesity is also cause a great financial burden. Many efforts have been made to understand the defense against obesity and weight loss. The goal of this study was to understand the characterization of food intake and weight gain responses when imposed on a high-fat diet (HFD) using rats. It was predicted that weight gain would be dependent on energy intake and it would have a significant effect on adiposity compared to energy intake. Data showed that energy intake had high significance with adiposity whereas weight gain showed no significance. Also for the rats that were on HFD, the obesity-prone (OP) rats exhibited a great amount of weight gain and energy intake while the obesity-resistance (OR) rats showed a similar weight gain to the controlled group on low-fat diet (LFD) despite being hyperphagic. This suggests that OR is characterized by equal weight gain despite hyperphagia but this alone cannot explain the boy defense against obesity. More research is needed with a larger sample size to understand weight gain responses in order to fight against the epidemic of obesity.
Date Created
2018-05
Agent

Exposure to engineered nanomaterial results in disruption of brush borders in epithelia models in vitro

153112-Thumbnail Image.png
Description
Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the

Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters less than 100 nm in any external dimension. Examples of their use include titanium dioxide added as a pigment in products intended to be ingested by humans, silicon dioxide NPs are used in foods as an anticaking agent, and gold or iron oxide NPs can be used as vectors for drug delivery or contrast agents for specialized medical imaging. Although the intended use of these NPs is often to improve human health, it has come to the attention of investigators that NPs can have unintended or even detrimental effects on the organism. This work describes one such unintended effect of NP exposure from the perspective of exposure via the oral route. First, this Dissertation will explain an event referred to as brush border disruption that occurred after nanoparticles interacted with an in vitro model of the human intestinal epithelium. Second, this Dissertation will identify and characterize several consumer goods that were shown to contain titanium dioxide that are intended to be ingested. Third, this Dissertation shows that sedimentation due to gravity does not artifactually result in disruption of brush borders as a consequence of exposure to food grade titanium dioxide in vitro. Finally, this Dissertation will demonstrate that iron oxide nanoparticles elicited similar effects after exposure to an in vitro brush border expressing model of the human placenta. Together, these data suggest that brush border disruption is not an artifact of the material/cell culture model, but instead represents a bona fide biological response as a result of exposure to nanomaterial.
Date Created
2014
Agent

Decoding brood pheromone: the releaser and primer effects of young and old larvae on honey bee (Apis mellifera) workers

152501-Thumbnail Image.png
Description
How a colony regulates the division of labor to forage for nutritional resources while accommodating for changes in colony demography is a fundamental question in the sociobiology of social insects. In honey bee, Apis mellifera, brood composition impacts the division

How a colony regulates the division of labor to forage for nutritional resources while accommodating for changes in colony demography is a fundamental question in the sociobiology of social insects. In honey bee, Apis mellifera, brood composition impacts the division of labor, but it is unknown if colonies adjust the allocation of foragers to carbohydrate and protein resources based on changes in the age demography of larvae and the pheromones they produce. Young and old larvae produce pheromones that differ in composition and volatility. In turn, nurses differentially provision larvae, feeding developing young worker larvae a surplus diet that is more queen-like in protein composition and food availability, while old larvae receive a diet that mimics the sugar composition of the queen larval diet but is restrictively fed instead of provided ad lib. This research investigated how larval age and the larval pheromone e-β ocimene (eβ) impact foraging activity and foraging load. Additional cage studies were conducted to determine if eβ interacts synergistically with queen mandibular pheromone (QMP) to suppress ovary activation and prime worker physiology for nursing behavior. Lastly, the priming effects of larval age and eβ on worker physiology and the transition from in-hive nursing tasks to outside foraging were examined. Results indicate that workers differentially respond to larvae of different ages, likely by detecting changes in the composition of the pheromones they emit. This resulted in adjustments to the foraging division of labor (pollen vs. nectar) to ensure that the nutritional needs of the colony's brood were met. For younger larvae and eβ, this resulted in a bias favoring pollen collection. The cage studies reveal that both eβ and QMP suppressed ovary activation, but the larval pheromone was more effective. Maturing in an environment of young or old larvae primed bees for nursing and impacted important endocrine titers involved in the transition to foraging, so bees maturing in the presence of larvae foraged earlier than control bees reared with no brood.
Date Created
2014
Agent