Sample size and test length minima for DIMTEST with conditional covariance-based subtest selection

150934-Thumbnail Image.png
Description
The existing minima for sample size and test length recommendations for DIMTEST (750 examinees and 25 items) are tied to features of the procedure that are no longer in use. The current version of DIMTEST uses a bootstrapping procedure to

The existing minima for sample size and test length recommendations for DIMTEST (750 examinees and 25 items) are tied to features of the procedure that are no longer in use. The current version of DIMTEST uses a bootstrapping procedure to remove bias from the test statistic and is packaged with a conditional covariance-based procedure called ATFIND for partitioning test items. Key factors such as sample size, test length, test structure, the correlation between dimensions, and strength of dependence were manipulated in a Monte Carlo study to assess the effectiveness of the current version of DIMTEST with fewer examinees and items. In addition, the DETECT program was also used to partition test items; a second feature of this study also compared the structure of test partitions obtained with ATFIND and DETECT in a number of ways. With some exceptions, the performance of DIMTEST was quite conservative in unidimensional conditions. The performance of DIMTEST in multidimensional conditions depended on each of the manipulated factors, and did suggest that the minima of sample size and test length can be made lower for some conditions. In terms of partitioning test items in unidimensional conditions, DETECT tended to produce longer assessment subtests than ATFIND in turn yielding different test partitions. In multidimensional conditions, test partitions became more similar and were more accurate with increased sample size, for factorially simple data, greater strength of dependence, and a decreased correlation between dimensions. Recommendations for sample size and test length minima are provided along with suggestions for future research.
Date Created
2012
Agent

Assessment of item parameter drift of known items in a university placement exam

150518-Thumbnail Image.png
Description
ABSTRACT This study investigated the possibility of item parameter drift (IPD) in a calculus placement examination administered to approximately 3,000 students at a large university in the United States. A single form of the exam was administered continuously for a

ABSTRACT This study investigated the possibility of item parameter drift (IPD) in a calculus placement examination administered to approximately 3,000 students at a large university in the United States. A single form of the exam was administered continuously for a period of two years, possibly allowing later examinees to have prior knowledge of specific items on the exam. An analysis of IPD was conducted to explore evidence of possible item exposure. Two assumptions concerning items exposure were made: 1) item recall and item exposure are positively correlated, and 2) item exposure results in the items becoming easier over time. Special consideration was given to two contextual item characteristics: 1) item location within the test, specifically items at the beginning and end of the exam, and 2) the use of an associated diagram. The hypotheses stated that these item characteristics would make the items easier to recall and, therefore, more likely to be exposed, resulting in item drift. BILOG-MG 3 was used to calibrate the items and assess for IPD. No evidence was found to support the hypotheses that the items located at the beginning of the test or with an associated diagram drifted as a result of item exposure. Three items among the last ten on the exam drifted significantly and became easier, consistent with item exposure. However, in this study, the possible effects of item exposure could not be separated from the effects of other potential factors such as speededness, curriculum changes, better test preparation on the part of subsequent examinees, or guessing.
Date Created
2012
Agent

Assessing Postsecondary Students' Orientation toward Lifelong Learning

150411-Thumbnail Image.png
Description
Institutions of higher education often tout that they are developing students to become lifelong learners. Evaluative efforts in this area have been presumably hindered by the lack of a uniform conceptualization of lifelong learning. Lifelong learning has been defined from

Institutions of higher education often tout that they are developing students to become lifelong learners. Evaluative efforts in this area have been presumably hindered by the lack of a uniform conceptualization of lifelong learning. Lifelong learning has been defined from institutional, economic, socio-cultural, and pedagogical perspectives, among others. This study presents the existing operational definitions and theories of lifelong learning in the context of higher education and synthesizes them to propose a unified model of college students' orientation toward lifelong learning. The model theorizes that orientation toward lifelong learning is a latent construct which manifests as students' likelihood to engage in four types of learning activities: formal work-related activities, informal work-related activities, formal personal interest activities, and informal personal interest activities. The Postsecondary Orientation toward Lifelong Learning scale (POLL) was developed and the validity of the resulting score interpretations was examined. The instrument was used to compare potential differences in orientation toward lifelong learning between freshmen and seniors. Exploratory factor analyses of the responses of 138 undergraduate college students in the pilot study data provided tentative support for the factor structure within each type of learning activity. Guttman's <λ>λ2 estimates of the learning activity subscales ranged from .78 to .85. Follow-up confirmatory factor analysis using structural equation modeling did not corroborate support for the hypothesized four-factor model using the main student sample data of 405 undergraduate students. Several alternative reflective factor structures were explored. A two-factor model representing factors for Instructing/Presenting and Reading learning activities produced marginal model-data fit and warrants further investigation. The summed POLL total scores had a relatively strong positive correlation with global interest in learning (.58), moderate positive correlations with civic engagement and participation (.38) and life satisfaction (.29), and a small positive correlation with social desirability (.15). The results of the main study do not provide support for the malleability of postsecondary students' orientation toward lifelong learning, as measured by the summed POLL scores. The difference between freshmen and seniors' average total POLL scores was not statistically significant and was negligible in size.
Date Created
2011
Agent

Nonword item generation: predicting item difficulty in nonword repetition

150357-Thumbnail Image.png
Description
The current study employs item difficulty modeling procedures to evaluate the feasibility of potential generative item features for nonword repetition. Specifically, the extent to which the manipulated item features affect the theoretical mechanisms that underlie nonword repetition accuracy was estimated.

The current study employs item difficulty modeling procedures to evaluate the feasibility of potential generative item features for nonword repetition. Specifically, the extent to which the manipulated item features affect the theoretical mechanisms that underlie nonword repetition accuracy was estimated. Generative item features were based on the phonological loop component of Baddelely's model of working memory which addresses phonological short-term memory (Baddeley, 2000, 2003; Baddeley & Hitch, 1974). Using researcher developed software, nonwords were generated to adhere to the phonological constraints of Spanish. Thirty-six nonwords were chosen based on the set item features identified by the proposed cognitive processing model. Using a planned missing data design, two-hundred fifteen Spanish-English bilingual children were administered 24 of the 36 generated nonwords. Multiple regression and explanatory item response modeling techniques (e.g., linear logistic test model, LLTM; Fischer, 1973) were used to estimate the impact of item features on item difficulty. The final LLTM included three item radicals and two item incidentals. Results indicated that the LLTM predicted item difficulties were highly correlated with the Rasch item difficulties (r = .89) and accounted for a substantial amount of the variance in item difficulty (R2 = .79). The findings are discussed in terms of validity evidence in support of using the phonological loop component of Baddeley's model (2000) as a cognitive processing model for nonword repetition items and the feasibility of using the proposed radical structure as an item blueprint for the future generation of nonword repetition items.
Date Created
2011
Agent

Assessing dimensionality in complex data structures: a performance comparison of DETECT and NOHARM procedures

149935-Thumbnail Image.png
Description
The purpose of this study was to investigate the effect of complex structure on dimensionality assessment in compensatory and noncompensatory multidimensional item response models (MIRT) of assessment data using dimensionality assessment procedures based on conditional covariances (i.e., DETECT) and a

The purpose of this study was to investigate the effect of complex structure on dimensionality assessment in compensatory and noncompensatory multidimensional item response models (MIRT) of assessment data using dimensionality assessment procedures based on conditional covariances (i.e., DETECT) and a factor analytical approach (i.e., NOHARM). The DETECT-based methods typically outperformed the NOHARM-based methods in both two- (2D) and three-dimensional (3D) compensatory MIRT conditions. The DETECT-based methods yielded high proportion correct, especially when correlations were .60 or smaller, data exhibited 30% or less complexity, and larger sample size. As the complexity increased and the sample size decreased, the performance typically diminished. As the complexity increased, it also became more difficult to label the resulting sets of items from DETECT in terms of the dimensions. DETECT was consistent in classification of simple items, but less consistent in classification of complex items. Out of the three NOHARM-based methods, χ2G/D and ALR generally outperformed RMSR. χ2G/D was more accurate when N = 500 and complexity levels were 30% or lower. As the number of items increased, ALR performance improved at correlation of .60 and 30% or less complexity. When the data followed a noncompensatory MIRT model, the NOHARM-based methods, specifically χ2G/D and ALR, were the most accurate of all five methods. The marginal proportions for labeling sets of items as dimension-like were typically low, suggesting that the methods generally failed to label two (three) sets of items as dimension-like in 2D (3D) noncompensatory situations. The DETECT-based methods were more consistent in classifying simple items across complexity levels, sample sizes, and correlations. However, as complexity and correlation levels increased the classification rates for all methods decreased. In most conditions, the DETECT-based methods classified complex items equally or more consistent than the NOHARM-based methods. In particular, as complexity, the number of items, and the true dimensionality increased, the DETECT-based methods were notably more consistent than any NOHARM-based method. Despite DETECT's consistency, when data follow a noncompensatory MIRT model, the NOHARM-based method should be preferred over the DETECT-based methods to assess dimensionality due to poor performance of DETECT in identifying the true dimensionality.
Date Created
2011
Agent

Teachers' preferred methods of gaining information about epilepsy

149820-Thumbnail Image.png
Description
Children with epilepsy represent a unique group of students who may require accommodations in school to be optimally successful. Therefore, it is important for teachers to understand the possible academic consequences epilepsy can have on a child. An

Children with epilepsy represent a unique group of students who may require accommodations in school to be optimally successful. Therefore, it is important for teachers to understand the possible academic consequences epilepsy can have on a child. An important step in providing this information about epilepsy to teachers is understanding where they would prefer to acquire this information. The current study examined differences between teachers of differing ages, school levels and special education teaching status in their preferences for gaining information from parents and the internet. Contrary to expectations, older teachers (those 56 years of age and older) were no less likely that younger teachers to prefer information from the internet. As predicted, elementary school teachers were more likely than high school teachers to prefer information from parents. However, interestingly middle school teachers were also more likely to prefer information from parents than high school teachers. Lastly, contrary to hypothesized results, special education teachers were no more likely to prefer information from parents than non-special education colleagues. Limitations of this study, implications for practice and directions for future research are discussed.
Date Created
2011
Agent

Modern psychometric theory in clinical assessment

149687-Thumbnail Image.png
Description
Item response theory (IRT) and related latent variable models represent modern psychometric theory, the successor to classical test theory in psychological assessment. While IRT has become prevalent in the assessment of ability and achievement, it has not been widely embraced

Item response theory (IRT) and related latent variable models represent modern psychometric theory, the successor to classical test theory in psychological assessment. While IRT has become prevalent in the assessment of ability and achievement, it has not been widely embraced by clinical psychologists. This appears due, in part, to psychometrists' use of unidimensional models despite evidence that psychiatric disorders are inherently multidimensional. The construct validity of unidimensional and multidimensional latent variable models was compared to evaluate the utility of modern psychometric theory in clinical assessment. Archival data consisting of 688 outpatients' presenting concerns, psychiatric diagnoses, and item level responses to the Brief Symptom Inventory (BSI) were extracted from files at a university mental health clinic. Confirmatory factor analyses revealed that models with oblique factors and/or item cross-loadings better represented the internal structure of the BSI in comparison to a strictly unidimensional model. The models were generally equivalent in their ability to account for variance in criterion-related validity variables; however, bifactor models demonstrated superior validity in differentiating between mood and anxiety disorder diagnoses. Multidimensional IRT analyses showed that the orthogonal bifactor model partitioned distinct, clinically relevant sources of item variance. Similar results were also achieved through multivariate prediction with an oblique simple structure model. Receiver operating characteristic curves confirmed improved sensitivity and specificity through multidimensional models of psychopathology. Clinical researchers are encouraged to consider these and other comprehensive models of psychological distress.
Date Created
2011
Agent

The impact of religious studies courses: measuring change in undergraduate attitudes

149678-Thumbnail Image.png
Description
In the current context of fiscal austerity as well as neo-colonial criticisms, the discipline of religious studies has been challenged to critically assess its teaching methods as well as articulate its relevance in the modern university setting. Responding to these

In the current context of fiscal austerity as well as neo-colonial criticisms, the discipline of religious studies has been challenged to critically assess its teaching methods as well as articulate its relevance in the modern university setting. Responding to these needs, this dissertation explores the educational outcomes on undergraduate students as a result of religious studies curriculum. This research employs a robust quantitative methodology designed to assess the impact of the courses while controlling for a number of covariates. Based on data collected from pre- and post-course surveys of a combined 1,116 students enrolled at Arizona State University (ASU) and two area community colleges, the research examines student change across five outcomes: attributional complexity, multi-religious awareness, commitment to social justice, individual religiosity, and the first to be developed, neo-colonial measures. The sample was taken in the Fall of 2009 from courses including Religions of the World, introductory Islamic studies courses, and a control group consisting of engineering and political science students. The findings were mixed. From the "virtues of the humanities" standpoint, select within group changes showed a statistically significant positive shift, but when compared across groups and the control group, there were no statistically significant findings after controlling for key variables. The students' pre-course survey score was the best predictor of their post-course survey score. In response to the neo-colonial critiques, the non-findings suggest the critiques have been overstated in terms of their impact pedagogically or in the classroom.
Date Created
2011
Agent