Patterns of symptomology over time and their relation to outcome

156571-Thumbnail Image.png
Description
The purpose of this study was to examine the association between characteristics of the symptomatology change curve (i.e., initial symptomatology, rate of change, curvature) and final treatment outcome. The sample consisted of community clients (N = 492) seen by 204

The purpose of this study was to examine the association between characteristics of the symptomatology change curve (i.e., initial symptomatology, rate of change, curvature) and final treatment outcome. The sample consisted of community clients (N = 492) seen by 204 student therapists at a training clinic. A multilevel approach to account for therapist effects was followed. Linear, quadratic, and cubic trajectories of anxiety and depression symptomatology, as assessed by the Shorter Psychotherapy and Counseling Evaluation (sPaCE; Halstead, Leach, & Rust, 2007), were estimated. The multilevel quadratic trajectory best fit the data and depicted a descending curve (partial “U”-shaped). The quadratic growth parameters (intercept, slope, quadratic) were then used as predictors of both symptom change and reliable improvement in general symptomatology (pre- to post-treatment), as assessed by the Outcome Questionnaire-45.2 (OQ-45.2; Lambert, Hansen, Umpress, Lunen, Okiishi et al., 1996). The quadratic growth parameters of depression and anxiety showed predictive power for both symptom change and reliable improvement in general symptomatology. Patterns for two different successful outcomes (1-change in general symptomatology and 2-reliable improvement) were identified. For symptom change, successful outcomes followed a pattern of low initial levels of depression and anxiety, high initial rates of change (slope), and high (flattening after initial drop) curvature, and the pattern applied to both within- and between-therapist levels. For reliable improvement at within-therapist level, successful outcomes followed a pattern of high initial rate of change (slope) and high curvature. For reliable improvement at between-therapist level, successful outcomes were associated with a pattern of low initial levels of depression and anxiety. Implications for clinical practice are discussed.
Date Created
2018
Agent

Statistical properties of the single mediator model with latent variables in the bayesian framework

155670-Thumbnail Image.png
Description
Statistical mediation analysis has been widely used in the social sciences in order to examine the indirect effects of an independent variable on a dependent variable. The statistical properties of the single mediator model with manifest and latent variables have

Statistical mediation analysis has been widely used in the social sciences in order to examine the indirect effects of an independent variable on a dependent variable. The statistical properties of the single mediator model with manifest and latent variables have been studied using simulation studies. However, the single mediator model with latent variables in the Bayesian framework with various accurate and inaccurate priors for structural and measurement model parameters has yet to be evaluated in a statistical simulation. This dissertation outlines the steps in the estimation of a single mediator model with latent variables as a Bayesian structural equation model (SEM). A Monte Carlo study is carried out in order to examine the statistical properties of point and interval summaries for the mediated effect in the Bayesian latent variable single mediator model with prior distributions with varying degrees of accuracy and informativeness. Bayesian methods with diffuse priors have equally good statistical properties as Maximum Likelihood (ML) and the distribution of the product. With accurate informative priors Bayesian methods can increase power up to 25% and decrease interval width up to 24%. With inaccurate informative priors the point summaries of the mediated effect are more biased than ML estimates, and the bias is higher if the inaccuracy occurs in priors for structural parameters than in priors for measurement model parameters. Findings from the Monte Carlo study are generalizable to Bayesian analyses with priors of the same distributional forms that have comparable amounts of (in)accuracy and informativeness to priors evaluated in the Monte Carlo study.
Date Created
2017
Agent

Connecting to the future: a revised measure of exogenous perceptions of instrumentality

155659-Thumbnail Image.png
Description
The primary objective of this study was to revise a measure of exogenous instrumentality, part of a larger scale known as the Perceptions of Instrumentality Scale (Husman, Derryberry, Crowson, & Lomax, 2004) used to measure future oriented student value for

The primary objective of this study was to revise a measure of exogenous instrumentality, part of a larger scale known as the Perceptions of Instrumentality Scale (Husman, Derryberry, Crowson, & Lomax, 2004) used to measure future oriented student value for course content. Study 1 piloted the revised items, explored the factor structure, and provided initial evidence for the reliability and validity of the revised scale. Study 2 provided additional reliability evidence but a factor analysis with the original and revised scale items revealed that the revised scale was measuring a distinct and separate construct that was not exogenous instrumentality. Here this new construct is called extrinsic instrumentality for grade. This study revealed that those that endorse a high utility value for grade report lower levels of connectedness (Husman & Shell, 2008) and significantly less use of knowledge building strategies (Shell, et al., 2005). These findings suggest that there are additional types of future oriented extrinsic motivation that should be considered when constructing interventions for students, specifically non-major students. This study also provided additional evidence that there are types of extrinsic motivation that are adaptive and have positive relationships with knowledge building strategies and connectedness to the future. Implications for the measurement of future time perspective (FTP) and its relationship to these three proximal, future oriented, course specific measures of value are also discussed.
Date Created
2017
Agent

A Bayesian Synthesis approach to data fusion using augmented data-dependent priors

155625-Thumbnail Image.png
Description
The process of combining data is one in which information from disjoint datasets sharing at least a number of common variables is merged. This process is commonly referred to as data fusion, with the main objective of creating a new

The process of combining data is one in which information from disjoint datasets sharing at least a number of common variables is merged. This process is commonly referred to as data fusion, with the main objective of creating a new dataset permitting more flexible analyses than the separate analysis of each individual dataset. Many data fusion methods have been proposed in the literature, although most utilize the frequentist framework. This dissertation investigates a new approach called Bayesian Synthesis in which information obtained from one dataset acts as priors for the next analysis. This process continues sequentially until a single posterior distribution is created using all available data. These informative augmented data-dependent priors provide an extra source of information that may aid in the accuracy of estimation. To examine the performance of the proposed Bayesian Synthesis approach, first, results of simulated data with known population values under a variety of conditions were examined. Next, these results were compared to those from the traditional maximum likelihood approach to data fusion, as well as the data fusion approach analyzed via Bayes. The assessment of parameter recovery based on the proposed Bayesian Synthesis approach was evaluated using four criteria to reflect measures of raw bias, relative bias, accuracy, and efficiency. Subsequently, empirical analyses with real data were conducted. For this purpose, the fusion of real data from five longitudinal studies of mathematics ability varying in their assessment of ability and in the timing of measurement occasions was used. Results from the Bayesian Synthesis and data fusion approaches with combined data using Bayesian and maximum likelihood estimation methods were reported. The results illustrate that Bayesian Synthesis with data driven priors is a highly effective approach, provided that the sample sizes for the fused data are large enough to provide unbiased estimates. Bayesian Synthesis provides another beneficial approach to data fusion that can effectively be used to enhance the validity of conclusions obtained from the merging of data from different studies.
Date Created
2017
Agent

Multiple imputation for two-level hierarchical models with categorical variables and missing at random data

155025-Thumbnail Image.png
Description
Accurate data analysis and interpretation of results may be influenced by many potential factors. The factors of interest in the current work are the chosen analysis model(s), the presence of missing data, and the type(s) of data collected. If analysis

Accurate data analysis and interpretation of results may be influenced by many potential factors. The factors of interest in the current work are the chosen analysis model(s), the presence of missing data, and the type(s) of data collected. If analysis models are used which a) do not accurately capture the structure of relationships in the data such as clustered/hierarchical data, b) do not allow or control for missing values present in the data, or c) do not accurately compensate for different data types such as categorical data, then the assumptions associated with the model have not been met and the results of the analysis may be inaccurate. In the presence of clustered
ested data, hierarchical linear modeling or multilevel modeling (MLM; Raudenbush & Bryk, 2002) has the ability to predict outcomes for each level of analysis and across multiple levels (accounting for relationships between levels) providing a significant advantage over single-level analyses. When multilevel data contain missingness, multilevel multiple imputation (MLMI) techniques may be used to model both the missingness and the clustered nature of the data. With categorical multilevel data with missingness, categorical MLMI must be used. Two such routines for MLMI with continuous and categorical data were explored with missing at random (MAR) data: a formal Bayesian imputation and analysis routine in JAGS (R/JAGS) and a common MLM procedure of imputation via Bayesian estimation in BLImP with frequentist analysis of the multilevel model in Mplus (BLImP/Mplus). Manipulated variables included interclass correlations, number of clusters, and the rate of missingness. Results showed that with continuous data, R/JAGS returned more accurate parameter estimates than BLImP/Mplus for almost all parameters of interest across levels of the manipulated variables. Both R/JAGS and BLImP/Mplus encountered convergence issues and returned inaccurate parameter estimates when imputing and analyzing dichotomous data. Follow-up studies showed that JAGS and BLImP returned similar imputed datasets but the choice of analysis software for MLM impacted the recovery of accurate parameter estimates. Implications of these findings and recommendations for further research will be discussed.
Date Created
2016
Agent

Determining appropriate sample sizes and their effects on key parameters in longitudinal three-level models

154905-Thumbnail Image.png
Description
Through a two study simulation design with different design conditions (sample size at level 1 (L1) was set to 3, level 2 (L2) sample size ranged from 10 to 75, level 3 (L3) sample size ranged from 30 to 150,

Through a two study simulation design with different design conditions (sample size at level 1 (L1) was set to 3, level 2 (L2) sample size ranged from 10 to 75, level 3 (L3) sample size ranged from 30 to 150, intraclass correlation (ICC) ranging from 0.10 to 0.50, model complexity ranging from one predictor to three predictors), this study intends to provide general guidelines about adequate sample sizes at three levels under varying ICC conditions for a viable three level HLM analysis (e.g., reasonably unbiased and accurate parameter estimates). In this study, the data generating parameters for the were obtained using a large-scale longitudinal data set from North Carolina, provided by the National Center on Assessment and Accountability for Special Education (NCAASE). I discuss ranges of sample sizes that are inadequate or adequate for convergence, absolute bias, relative bias, root mean squared error (RMSE), and coverage of individual parameter estimates. The current study, with the help of a detailed two-part simulation design for various sample sizes, model complexity and ICCs, provides various options of adequate sample sizes under different conditions. This study emphasizes that adequate sample sizes at either L1, L2, and L3 can be adjusted according to different interests in parameter estimates, different ranges of acceptable absolute bias, relative bias, root mean squared error, and coverage. Under different model complexity and varying ICC conditions, this study aims to help researchers identify L1, L2, and L3 sample size or both as the source of variation in absolute bias, relative bias, RMSE, or coverage proportions for a certain parameter estimate. This assists researchers in making better decisions for selecting adequate sample sizes in a three-level HLM analysis. A limitation of the study was the use of only a single distribution for the dependent and explanatory variables, different types of distributions and their effects might result in different sample size recommendations.
Date Created
2016
Agent

The impact of partial measurement invariance on between-group comparisons of latent means for a second-order factor

154498-Thumbnail Image.png
Description
A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated

A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated to be at one of the two levels or both levels for a second-order CFA model. The numbers and directions of differences in noninvariant loadings or intercepts were also manipulated, along with total sample size and effect size of the second-order factor mean difference. Data were analyzed using correct and incorrect specifications of noninvariant loadings and intercepts. Results summarized across the 5,000 replications in each condition included Type I error rates and powers for the chi-square difference test and the Wald test of the second-order factor mean difference, estimation bias and efficiency for this latent mean difference, and means of the standardized root mean square residual (SRMR) and the root mean square error of approximation (RMSEA).

When the model was correctly specified, no obvious estimation bias was observed; when the model was misspecified by constraining noninvariant loadings or intercepts to be equal, the latent mean difference was overestimated if the direction of the difference in loadings or intercepts of was consistent with the direction of the latent mean difference, and vice versa. Increasing the number of noninvariant loadings or intercepts resulted in larger estimation bias if these noninvariant loadings or intercepts were constrained to be equal. Power to detect the latent mean difference was influenced by estimation bias and the estimated variance of the difference in the second-order factor mean, in addition to sample size and effect size. Constraining more parameters to be equal between groups—even when unequal in the population—led to a decrease in the variance of the estimated latent mean difference, which increased power somewhat. Finally, RMSEA was very sensitive for detecting misspecification due to improper equality constraints in all conditions in the current scenario, including the nonzero latent mean difference, but SRMR did not increase as expected when noninvariant parameters were constrained.
Date Created
2016
Agent

Model criticism for growth curve models via posterior predictive model checking

154063-Thumbnail Image.png
Description
Although models for describing longitudinal data have become increasingly sophisticated, the criticism of even foundational growth curve models remains challenging. The challenge arises from the need to disentangle data-model misfit at multiple and interrelated levels of analysis. Using posterior predictive

Although models for describing longitudinal data have become increasingly sophisticated, the criticism of even foundational growth curve models remains challenging. The challenge arises from the need to disentangle data-model misfit at multiple and interrelated levels of analysis. Using posterior predictive model checking (PPMC)—a popular Bayesian framework for model criticism—the performance of several discrepancy functions was investigated in a Monte Carlo simulation study. The discrepancy functions of interest included two types of conditional concordance correlation (CCC) functions, two types of R2 functions, two types of standardized generalized dimensionality discrepancy (SGDDM) functions, the likelihood ratio (LR), and the likelihood ratio difference test (LRT). Key outcomes included effect sizes of the design factors on the realized values of discrepancy functions, distributions of posterior predictive p-values (PPP-values), and the proportion of extreme PPP-values.

In terms of the realized values, the behavior of the CCC and R2 functions were generally consistent with prior research. However, as diagnostics, these functions were extremely conservative even when some aspect of the data was unaccounted for. In contrast, the conditional SGDDM (SGDDMC), LR, and LRT were generally sensitive to the underspecifications investigated in this work on all outcomes considered. Although the proportions of extreme PPP-values for these functions tended to increase in null situations for non-normal data, this behavior may have reflected the true misfit that resulted from the specification of normal prior distributions. Importantly, the LR and the SGDDMC to a greater extent exhibited some potential for untangling the sources of data-model misfit. Owing to connections of growth curve models to the more fundamental frameworks of multilevel modeling, structural equation models with a mean structure, and Bayesian hierarchical models, the results of the current work may have broader implications that warrant further research.
Date Created
2015
Agent

Three-level multiple imputation: a fully conditional specification approach

154040-Thumbnail Image.png
Description
Currently, there is a clear gap in the missing data literature for three-level models.

To date, the literature has only focused on the theoretical and algorithmic work

required to implement three-level imputation using the joint model (JM) method of

imputation, leaving relatively no

Currently, there is a clear gap in the missing data literature for three-level models.

To date, the literature has only focused on the theoretical and algorithmic work

required to implement three-level imputation using the joint model (JM) method of

imputation, leaving relatively no work done on fully conditional specication (FCS)

method. Moreover, the literature lacks any methodological evaluation of three-level

imputation. Thus, this thesis serves two purposes: (1) to develop an algorithm in

order to implement FCS in the context of a three-level model and (2) to evaluate

both imputation methods. The simulation investigated a random intercept model

under both 20% and 40% missing data rates. The ndings of this thesis suggest

that the estimates for both JM and FCS were largely unbiased, gave good coverage,

and produced similar results. The sole exception for both methods was the slope for

the level-3 variable, which was modestly biased. The bias exhibited by the methods

could be due to the small number of clusters used. This nding suggests that future

research ought to investigate and establish clear recommendations for the number of

clusters required by these imputation methods. To conclude, this thesis serves as a

preliminary start in tackling a much larger issue and gap in the current missing data

literature.
Date Created
2015
Agent

Multilevel multiple imputation: an examination of competing methods

153391-Thumbnail Image.png
Description
Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad

Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS) imputation. JM draws missing values simultaneously for all incomplete variables using a multivariate distribution (e.g., multivariate normal). FCS, on the other hand, imputes variables one at a time, drawing missing values from a series of univariate distributions. In the single-level context, these two approaches have been shown to be equivalent with multivariate normal data. However, less is known about the similarities and differences of these two approaches with multilevel data, and the methodological literature provides no insight into the situations under which the approaches would produce identical results. This document examined five multilevel multiple imputation approaches (three JM methods and two FCS methods) that have been proposed in the literature. An analytic section shows that only two of the methods (one JM method and one FCS method) used imputation models equivalent to a two-level joint population model that contained random intercepts and different associations across levels. The other three methods employed imputation models that differed from the population model primarily in their ability to preserve distinct level-1 and level-2 covariances. I verified the analytic work with computer simulations, and the simulation results also showed that imputation models that failed to preserve level-specific covariances produced biased estimates. The studies also highlighted conditions that exacerbated the amount of bias produced (e.g., bias was greater for conditions with small cluster sizes). The analytic work and simulations lead to a number of practical recommendations for researchers.
Date Created
2015
Agent