Design and Fabrication of Laminated CoZrTaB Magnetic Core Inductor

171929-Thumbnail Image.png
Description
The strong demand for the advancing of Moore’s law on device size scaling down has accelerated the miniaturization of passive devices. Among these important electronic components, inductors are facing challenges because the inductance value, which is strongly dependent on the

The strong demand for the advancing of Moore’s law on device size scaling down has accelerated the miniaturization of passive devices. Among these important electronic components, inductors are facing challenges because the inductance value, which is strongly dependent on the coil number for the air core inductor case, will be sacrificed when the size is shrinking. Adding magnetic core is one of the solutions due to its enhancement of inductance density but it will also add complexity to the fabrication process, and the core loss induced by the eddy current at high frequency is another drawback. In this report, the output of this research will be presented, which has three parts. In the first part, the CoZrTaB thin films are sputtered on different substrates and characterized comprehensively. The laminated CoZrTaB thin films have been also investigated, showing low coercivity and anisotropy field on both Si and polyimide substrates. Also, the different process conditions that could affect the magnetic properties are investigated. In the second part, Ansys Maxwell software is used to optimize the lamination profile and the magnetic core inductor structure. The measured M-H loop is imported to improve the simulation accuracy. In the third part, a novel method to fabricate the magnetic core inductors on flexible substrates is proposed. The sandwich magnetic core inductor is fabricated and assembled with flipchip bonder. The measurement result shows that this single-turn magnetic core inductor can achieve up to 24% inductance enhancement and quality factor of 7.42. The super low DC resistance (< 60 mΩ) proves that it is a good candidate to act as the passive component in the power delivery module and the use of polyimide-based substrate extends its compatibility to more packaging form factors.
Date Created
2022
Agent

Improvements in Saliency Tracking for use in Brushless DC Motors

Description
Brushless DC (BLDC) motors are becoming increasingly common in various industrial and commercial applications such as micromobility and robotics due to their high torque density and efficiency. A BLDC Motor is a three-phase synchronous motor that is very similar to

Brushless DC (BLDC) motors are becoming increasingly common in various industrial and commercial applications such as micromobility and robotics due to their high torque density and efficiency. A BLDC Motor is a three-phase synchronous motor that is very similar to a non-salient Permanent Magnet Synchronous Motor (PMSM) with key differences lying in the non-ideal characteristics of the motor; the most prominent of these is BLDC motors have trapezoidal-shaped Back-Electromotive Force (BEMF). Despite their advantages, a present weakness of BLDC motors is the difficulty controlling these motors at standstill and low-speed conditions that require high torque. These operating conditions are common in the target applications and almost always necessitate the use of external sensors which introduce additional costs and points of failure. As such, sensorless based methods of position estimation would serve to improve system reliability, cost, and efficiency. High Frequency (HF) pulsating voltage injection in the direct axis is a popular method of sensorless control of salient-pole Interior-mount Permanent Magnet Synchronous Motors (IPMSM); however, existing methods are not sufficiently robust for use in BLDC and small Surface-mount Permanent Magnet Synchronous Motors (SPMSM) and are accompanied by other issues, such as acoustic noise. This thesis proposes novel improvements to the method of High Frequency Voltage Injection to allow for practical use in BLDC Motors and small SPMSM. Proposed improvements include 1) a hybrid frequency generator which allows for dynamic frequency scaling to improve tracking and eliminate acoustic noise, 2) robust error calculation that is stable despite the non-ideal characteristics of BLDC Motors, 3) gain engineering of Proportional-Integral (PI) type Phase-Locked-Loop (PLL) trackers that further lend stability, 4) observer decoupling mechanism to allow for seamless transition into state-of-the-art BEMF sensing methods at high speed, and 5) saliency boosting that allows for continuous tracking of saliency under high torque load. Experimental tests with a quadrature encoder and torque efficiency calculations on a dynamometer verify the practicality of the proposed algorithm and improvements.
Date Created
2021
Agent

Wireless Charging Technologies

131572-Thumbnail Image.png
Description
In the world we live in today, nothing is impossible. Due to the advancements of technology, humans around the globe are able to hold computers that fit within the size of their pocket. These computers can do marvelous things,

In the world we live in today, nothing is impossible. Due to the advancements of technology, humans around the globe are able to hold computers that fit within the size of their pocket. These computers can do marvelous things, however run off batteries. These batteries need to be charged and up until a little while ago there was only one option available: wired chargers; however, because of the advancement of technology society has created a way to transfer power via magnetic fields. Now this concept has been around for a long time since the days of Nikola Tesla but just recently society has been able to apply his discoveries to charging these computers in our pockets. Unfortunately, the current models of these chargers come with a drawback as they are less efficient than wired chargers. However, this is the question our group has set out to answer. Is there any way possible to improve the efficiency of these wireless chargers so they are equal or even more efficient than wired chargers. This paper explores how to improve the efficiency in wireless chargers. Through research, simulations and testing the group has discovered areas that efficiency can be improved as well as makes recommendations to change the current wireless chargers on the market today. This paper also explores future applications of wireless chargers that can not only make life much easier but could also save lives in some cases. These applications can have many effects on hospitality, the medical field, as well as the supply chain and logistics of America.
Date Created
2020-05
Agent

Novel, Highly Efficient Algorithm for the Control of Three-Phase Brushless DC Motors

132050-Thumbnail Image.png
Description
Three-Phase brushless DC motors (BLDC) have become increasingly popular in many fields including industrial controls and remote-control hobby toys. They offer many advantages over their brushed counterparts such as smaller size, longer service life, and increased efficiency; however, one drawback

Three-Phase brushless DC motors (BLDC) have become increasingly popular in many fields including industrial controls and remote-control hobby toys. They offer many advantages over their brushed counterparts such as smaller size, longer service life, and increased efficiency; however, one drawback is that commutation must be handled electrically using a controller rather than by a mechanical commutator. Rotor position must be estimated in order to accurately commutate the motor, this is calculated either by sensors (sensored) or by measuring the generated Back-Electromotive Force (sensorless). There are two primary methods of brushless DC motor commutation, trapezoidal and sinusoidal. Both methods have advantages and disadvantages, as well as unique sets of rotor position estimation strategies. This paper will discuss in detail the development of a novel motor control algorithm that employs one method of sensorless trapezoidal control of BLDC motors where the BEMF is integrated after a zero-crossing event, the various challenges associated with direct BEMF measurement, and demonstrate a practical implementation of the new algorithm. Using a robust, high frequency sampling scheme and on-the-fly detection strategies, this new algorithm overcomes many of the shortcomings of similar control algorithms currently available on the market. As a result, this new algorithm provides even more robust control over BLDC motors, increased efficiency, and improved dynamic performance compared to its counterparts while simultaneously requiring little to no additional hardware in practical implementations. Topics investigated include BLDC motors, sensored and sensorless rotor estimation, PWM strategies, terminal voltage sensing, third harmonic voltage sensing and integration, sample timing, switching noise, and current recirculation.
Date Created
2019-12
Agent

Robotic 3D Mapping for Virtual Reality Implementation

134271-Thumbnail Image.png
Description
In recent years, environment mapping has garnered significant interest in both industrial and academic settings as a viable means of generating comprehensive virtual models of the physical world. These maps are created using simultaneous localization and mapping (SLAM) algorithms that

In recent years, environment mapping has garnered significant interest in both industrial and academic settings as a viable means of generating comprehensive virtual models of the physical world. These maps are created using simultaneous localization and mapping (SLAM) algorithms that combine depth contours with visual imaging information to create rich, layered point clouds. Given the recent advances in virtual reality technology, these generated point clouds can be imported onto the Oculus Rift or similar headset for virtual reality implementation. This project deals with the robotic implementation of RGB-D SLAM algorithms on mobile ground robots to generate complete point clouds that can be processed off-line and imported into virtual reality engines for viewing in the Oculus Rift. This project uses a ground robot along with a Kinect sensor to collect RGB-D data of the surrounding environment to build point cloud maps using SLAM software. These point clouds are then exported as object or polygon files for post-processing in software engines such as Meshlab or Unity. The point clouds generated from the SLAM software can be viewed in the Oculus Rift as is. However, these maps are mainly empty space and can be further optimized for virtual viewing. Additional techniques such as meshing and texture meshing were implemented on the raw point cloud maps and tested on the Oculus Rift. The aim of this project was to increase the potential applications for virtual reality by taking a robotic mapping approach to virtual reality environment development. This project was successful in achieving its objective. The following report details the processes used in developing a remotely-controlled robotic platform that can scan its environment and generate viable point cloud maps. These maps are then processed off line and ported into virtual reality software for viewing through the Oculus Rift.
Date Created
2017-05
Agent

Integrated inductors with micro-patterned magnetic thin films for RF and power applications

152275-Thumbnail Image.png
Description
With increasing demand for System on Chip (SoC) and System in Package (SiP) design in computer and communication technologies, integrated inductor which is an essential passive component has been widely used in numerous integrated circuits (ICs) such as in voltage

With increasing demand for System on Chip (SoC) and System in Package (SiP) design in computer and communication technologies, integrated inductor which is an essential passive component has been widely used in numerous integrated circuits (ICs) such as in voltage regulators and RF circuits. In this work, soft ferromagnetic core material, amorphous Co-Zr-Ta-B, was incorporated into on-chip and in-package inductors in order to scale down inductors and improve inductors performance in both inductance density and quality factor. With two layers of 500 nm Co-Zr-Ta-B films a 3.5X increase in inductance and a 3.9X increase in quality factor over inductors without magnetic films were measured at frequencies as high as 1 GHz. By laminating technology, up to 9.1X increase in inductance and more than 5X increase in quality factor (Q) were obtained from stripline inductors incorporated with 50 nm by 10 laminated films with a peak Q at 300 MHz. It was also demonstrated that this peak Q can be pushed towards high frequency as far as 1GHz by a combination of patterning magnetic films into fine bars and laminations. The role of magnetic vias in magnetic flux and eddy current control was investigated by both simulation and experiment using different patterning techniques and by altering the magnetic via width. Finger-shaped magnetic vias were designed and integrated into on-chip RF inductors improving the frequency of peak quality factor from 400 MHz to 800 MHz without sacrificing inductance enhancement. Eddy current and magnetic flux density in different areas of magnetic vias were analyzed by HFSS 3D EM simulation. With optimized magnetic vias, high frequency response of up to 2 GHz was achieved. Furthermore, the effect of applied magnetic field on on-chip inductors was investigated for high power applications. It was observed that as applied magnetic field along the hard axis (HA) increases, inductance maintains similar value initially at low fields, but decreases at larger fields until the magnetic films become saturated. The high frequency quality factor showed an opposite trend which is correlated to the reduction of ferromagnetic resonant absorption in the magnetic film. In addition, experiments showed that this field-dependent inductance change varied with different patterned magnetic film structures, including bars/slots and fingers structures. Magnetic properties of Co-Zr-Ta-B films on standard organic package substrates including ABF and polyimide were also characterized. Effects of substrate roughness and stress were analyzed and simulated which provide strategies for integrating Co-Zr-Ta-B into package inductors and improving inductors performance. Stripline and spiral inductors with Co-Zr-Ta-B films were fabricated on both ABF and polyimide substrates. Maximum 90% inductance increase in hundreds MHz frequency range were achieved in stripline inductors which are suitable for power delivery applications. Spiral inductors with Co-Zr-Ta-B films showed 18% inductance increase with quality factor of 4 at frequency up to 3 GHz.
Date Created
2013
Agent