A Framework to Allow Unmanned Aerial Vehicles to Make Good Collisions

193482-Thumbnail Image.png
Description
The field of unmanned aerial vehicle, or UAV, navigation has been moving towards collision inclusive path planning, yet work has not been done to consider what a UAV is colliding with, and if it should or not. Therefore, there is

The field of unmanned aerial vehicle, or UAV, navigation has been moving towards collision inclusive path planning, yet work has not been done to consider what a UAV is colliding with, and if it should or not. Therefore, there is a need for a framework that allows a UAV to consider what is around it and find the best collision candidate. The following work presents a framework that allows UAVs to do so, by considering what an object is and the properties associated with it. Specifically, it considers an object’s material and monetary value to decide if it is good to collide with or not. This information is then published on a binary occupancy map that contains the objects’ size and location with respect to the current position of the UAV. The intent is that the generated binary occupancy map can be used with a path planner to decide what the UAV should collide with. The framework was designed to be as modular as possible and to work with conventional UAV's that have some degree of crash resistance incorporated into their design. The framework was tested by using it to identify various objects that could be collision candidates or not, and then carrying out collisions with some of the objects to test the framework’s accuracy. The purpose of this research was to further the field of collision inclusive path planning by allowing UAVs to know, in a way, what they are intending to collide with and decide if they should or not in order to make safer and more efficient collisions.
Date Created
2024
Agent

Risk Management of Industrial Robot Systems

193395-Thumbnail Image.png
Description
As industries advance and automation becomes more prevalent, it is vital that safety remains at the forefront of discussions. To support this, Risk Management standards have been developed and adopted for both North American and International markets. Additionally, technical documents

As industries advance and automation becomes more prevalent, it is vital that safety remains at the forefront of discussions. To support this, Risk Management standards have been developed and adopted for both North American and International markets. Additionally, technical documents have been published to streamline risk management processes. Part of these emerging technologies includes Collaborative robots, each with specific methods tailored to their capabilities. These standards offer guidance not only to end-users but also to Robot manufacturers, ensuring adherence to safety standards and providing methods for risk mitigation. The risk levels and categories are organized in a hierarchical structure, ranging from the most severe to negligible. Under these standards, the process involves identifying risks, mitigating them, validating the mitigation through verification, and solidifying the results. As technologies continue to evolve, it is essential for standards to evolve accordingly to ensure optimal safety levels when implemented correctly. Having effective risk management in place for all Industrial Robot Systems is paramount to reduce liability and protect both operators and assets. Detail key standards are that govern the realm of industrial robot systems for both north America and the rest if the world as well as highlight robot manufacturers adherence to the standards, response to safety, and how risk management can be applied.
Date Created
2024
Agent

Towards Robot-aided Gait Rehabilitation and Assistance via Characterization and Estimation of Human Locomotion

191009-Thumbnail Image.png
Description
Walking and mobility are essential aspects of our daily lives, enabling us to engage in various activities. Gait disorders and impaired mobility are widespread challenges faced by older adults and people with neurological injuries, as these conditions can significantly impact

Walking and mobility are essential aspects of our daily lives, enabling us to engage in various activities. Gait disorders and impaired mobility are widespread challenges faced by older adults and people with neurological injuries, as these conditions can significantly impact their quality of life, leading to a loss of independence and an increased risk of mortality. In response to these challenges, rehabilitation, and assistive robotics have emerged as promising alternatives to conventional gait therapy, offering potential solutions that are less labor-intensive and costly. Despite numerous advances in wearable lower-limb robotics, their current applicability remains confined to laboratory settings. To expand their utility to broader gait impairments and daily living conditions, there is a pressing need for more intelligent robot controllers. In this dissertation, these challenges are tackled from two perspectives: First, to improve the robot's understanding of human motion and intentions which is crucial for assistive robot control, a robust human locomotion estimation technique is presented, focusing on measuring trunk motion. Employing an invariant extended Kalman filtering method that takes sensor misplacement into account, improved convergence properties over the existing methods for different locomotion modes are shown. Secondly, to enhance safe and effective robot-aided gait training, this dissertation proposes to directly learn from physical therapists' demonstrations of manual gait assistance in post-stroke rehabilitation. Lower-limb kinematics of patients and assistive force applied by therapists to the patient's leg are measured using a wearable sensing system which includes a custom-made force sensing array. The collected data is then used to characterize a therapist's strategies. Preliminary analysis indicates that knee extension and weight-shifting play pivotal roles in shaping a therapist's assistance strategies, which are then incorporated into a virtual impedance model that effectively captures high-level therapist behaviors throughout a complete training session. Furthermore, to introduce safety constraints in the design of such controllers, a safety-critical learning framework is explored through theoretical analysis and simulations. A safety filter incorporating an online iterative learning component is introduced to bring robust safety guarantees for gait robotic assistance and training, addressing challenges such as stochasticity and the absence of a known prior dynamic model.
Date Created
2023
Agent

Dynamic Modeling, Robust Control and Contact Estimation of Soft Robotics

190916-Thumbnail Image.png
Description
Soft robotics has garnered attention for its substantial prospective in various domains, such as manipulation and interactions with humans, by offering competitive advantages against rigid robotic systems, including inherent compliance and variable stiffness. Despite these benefits, their theoretically infinite degrees

Soft robotics has garnered attention for its substantial prospective in various domains, such as manipulation and interactions with humans, by offering competitive advantages against rigid robotic systems, including inherent compliance and variable stiffness. Despite these benefits, their theoretically infinite degrees of freedom and prominent nonlinearities pose significant challenges in developing dynamic models and guiding the robots along desired paths. Additionally, soft robots may exhibit rigid behaviors and potentially collide with their surroundings during path tracking tasks, particularly when possible contact points are unknown. In this dissertation, reduced-order models are used to describe the behaviors of three different soft robot designs, including both linear parameter varying (LPV) and augmented rigid robot (ARR) models. While the reduced-order model captures the majority of the soft robot's dynamics, modeling uncertainties notably remain. Non-repeated modeling uncertainties are addressed by categorizing them as a lumped disturbance, employing two methodologies, $H_\infty$ method and nonlinear disturbance observer (NDOB) based sliding mode control, for its rejection. For repeated disturbances, an iterative learning control (ILC) with a P-type learning function is implemented to enhance trajectory tracking efficacy. Furthermore,for non-repeated disturbances, the NDOB facilitates the contact estimation, and its results are jointly used with a switching algorithm to modify the robot trajectories. The stability proof of all controllers and corresponding simulation and experimental results are provided. For a path tracking task of a soft robot with multi-segments, a robust control strategy that combines a LPV model with an innovative improved nonlinear disturbance observer-based adaptive sliding mode control (INASMC). The control framework employs a first-order LPV model for dynamic representation, leverages an improved disturbance observer for accurate disturbance forecasting, and utilizes adaptive sliding mode control to effectively counteract uncertainties. The tracking error under the proposed controller is proven to be asymptotically stable, and the controller's effectiveness is is validated with simulation and experimental results. Ultimately, this research mitigates the inherent uncertainty in soft robot modeling, thereby enhancing their functionality in contact-intensive tasks.
Date Created
2023
Agent

Embodied Wearables: The Role of Proprioception in Exoskeleton Design.

190848-Thumbnail Image.png
Description
This work endeavors to lay a solid foundation for the exploration and the considerations of exoskeletons, exosuits, and medical devices concerning proprioceptive feedback. This investigation is situated at the nexus of engineering, neuroscience, and rehabilitation medicine, striving to cultivate a

This work endeavors to lay a solid foundation for the exploration and the considerations of exoskeletons, exosuits, and medical devices concerning proprioceptive feedback. This investigation is situated at the nexus of engineering, neuroscience, and rehabilitation medicine, striving to cultivate a holistic understanding of how mechanical augmentation, interfaced synergistically with human proprioception, can foster enhanced mobility and safety. This is especially pertinent for individuals with compromised motor functions.British Neurologist Oliver Wolf Sacks in 1985 published “The Man who Mistook His Wife for a Hat” a series of his most memorable neurological case describing the brain's strangest pathways. One of these cases is “The Disembodied Lady”, Christina a 27-year-old woman that lost entirely the sense of proprioception due to polyneuropathy. This caused her to not be able to control her body, and she declares that “I feel the wind on my arms and face, and then I know, faintly, I have arms and a face. It’s not the real thing, but it’s something—it lifts this horrible, dead veil for a while. ” Finally, she was able to control her body using vision alone. Dr. Sacks introduced, for the first time, the importance of proprioception, as the sense of position of body parts relative to other parts of the body, to western culture. This document’s mission is to identify unexplored concepts in the literature regarding exoskeletons, wearables and assistive technology and a user’s proprioception, embodiment and utilization when wearing devices. Dr. Philipp Beckerle suggests the need to research the connections between wearable hardware and human sense of proprioception. He also emphasizes the need for functional assessment protocols for wearables devices and the role of embodiment. He criticizes the current commercially available upper-limb prostheses since they only restore limited functions and therefore impede embodiment. This document’s goal is to identify operative solutions through the adaptation of existing technologies and to use effective solutions to improve the quality of life of people suffering from pathologies or traumatic injuries.
Date Created
2023
Agent

The Use of Wearable Robotics For Improving Quality of Life

Description
Imagine the possibility of a cure for one of the most prevalent problems associated with aging. Numerous individuals experience difficulty getting out of bed, sitting, or performing normal tasks due to weak knees. This issue also affects manual laborers who

Imagine the possibility of a cure for one of the most prevalent problems associated with aging. Numerous individuals experience difficulty getting out of bed, sitting, or performing normal tasks due to weak knees. This issue also affects manual laborers who may be compelled to change careers or retire as a result of the strenuous repetitive nature of their work. The purpose of this Barrett Honors Thesis/Project is to build, testing, and conduct studies to create a portable, lightweight, low-profile passive leg exoskeleton that supports the legs and knees to assist in standing up from a kneeling position or lowering oneself to a sitting position.
Date Created
2023-12
Agent

Sensing, Modeling, Control and Evaluation of Soft Robots for Wearable Applications

189365-Thumbnail Image.png
Description
While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling,

While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms have shown promising results for sensor fusion with wearable robots, however, they require extensive data to train models for different users and experimental conditions. Modeling soft sensors and actuators require characterizing non-linearity and hysteresis, which complicates deriving an analytical model. Experimental characterization can capture the characteristics of non-linearity and hysteresis but requires developing a synthesized model for real-time control. Controllers for wearable soft robots must be robust to compensate for unknown disturbances that arise from the soft robot and its interaction with the user. Since developing dynamic models for soft robots is complex, inaccuracies that arise from the unmodeled dynamics lead to significant disturbances that the controller needs to compensate for. In addition, obtaining a physical model of the human-robot interaction is complex due to unknown human dynamics during walking. Finally, the performance of soft robots for wearable applications requires extensive experimental evaluation to analyze the benefits for the user. To address these challenges, this dissertation focuses on the sensing, modeling, control and evaluation of soft robots for wearable applications. A model-based sensor fusion algorithm is proposed to improve the estimation of human joint kinematics, with a soft flexible robot that requires compact and lightweight sensors. To overcome limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait sensing and haptic feedback. Through experimental characterization, a mathematical model is derived to quantify the user's ground reaction forces and the delivered haptic force. Lastly, the performance of a wearable soft exosuit in assisting human users during lifting tasks is evaluated, and the benefits obtained from the soft robot assistance are analyzed.
Date Created
2023
Agent

Data-driven Control of Nonlinear Dynamics Systems

189283-Thumbnail Image.png
Description
This research proposes some new data-driven control methods to control a nonlinear dynamic model. The nonlinear dynamic model linearizes by using the Koopman theory. The Koopman operator is the most important part of designing the Koopman theory. The data mode

This research proposes some new data-driven control methods to control a nonlinear dynamic model. The nonlinear dynamic model linearizes by using the Koopman theory. The Koopman operator is the most important part of designing the Koopman theory. The data mode decomposition (DMD) is used to obtain the Koopman operator. The proposed data-driven control method applies to different nonlinear systems such as microelectromechanical systems (MEMS), Worm robots, and 2 degrees of freedom (2 DoF) robot manipulators to verify the performance of the proposed method. For the MEMS gyroscope, three control methods are applied to the linearized dynamic model by the Koopman theory: linear quadratic regulator (LQR), compound fractional PID sliding mode control, and fractional order PID controller tuned with bat algorithm. For the Worm robot, an LQR controller is proposed to control the linearized dynamic model by the Koopman theory. A new fractional sliding mode control is proposed to control the 2 DoF arm robot. All the proposed controllers applied to the linearized dynamic model by the Kooman theory are compared with some conventional proposed controllers such as PID, sliding mode control, and conventional fractional sliding mode control to verify the performance of the proposed controllers. Simulation results validate their performance in high tracking performance, low tracking error, low frequency, and low maximum overshoot.
Date Created
2023
Agent

Upper-Extremity Exoskeleton

187805-Thumbnail Image.png
Description
In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for exoskeletons have ranged from devices as simple spring-loaded systems to using sensors such as electromyography (EMG). Despite EMGs being very common, force sensing resistors (FSRs) can be used instead. There are multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for either medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This thesis is a continuation of my ASU Barrett honors thesis, Upper-Extremity Exoskeleton. While working on my honors thesis, I helped develop a design for an upper extremity exoskeleton based on the Wilmer orthosis design for Mayo Clinic. Building upon the design of an orthosis, for the master’s thesis, I developed an FSR control system that is designed using a Wheatstone bridge circuit that can provide a clean reliable signal as compared to the current EMG setup.
Date Created
2023
Agent

Exploration of the Photoplethysmography Signal and its Applications to Wearable Devices

187616-Thumbnail Image.png
Description
Photoplethysmography (PPG) is a noninvasive optical signal that measures the change in blood volume. This particular signal can be interpreted to yield heart rate (HR) information which is commonly used in medical settings and diagnostics through wearable devices. The noninvasive

Photoplethysmography (PPG) is a noninvasive optical signal that measures the change in blood volume. This particular signal can be interpreted to yield heart rate (HR) information which is commonly used in medical settings and diagnostics through wearable devices. The noninvasive nature of the measurement of the signal however causes it to be susceptible to noise sources such as motion artifacts (MA). This research starts by describing an end-to-end embedded HR estimation system that leverages noisy PPG and accelerometer data through machine learning (ML) to estimate HR. Through embedded ML for HR estimation, the limitations and challenges are highlighted, and a different HR estimation method is proposed. Next, a point-based value iteration (PBVI) framework is proposed to optimally select HR estimation filters based on the observed user activity. Lastly, the underlying dynamics of the PPG are explored in order to create a sparse dynamic expression of the PPG signal, which can be used to simulate PPG data to improve ML or remove MA from PPG.
Date Created
2023
Agent