Exploration of the Photoplethysmography Signal and its Applications to Wearable Devices

187616-Thumbnail Image.png
Description
Photoplethysmography (PPG) is a noninvasive optical signal that measures the change in blood volume. This particular signal can be interpreted to yield heart rate (HR) information which is commonly used in medical settings and diagnostics through wearable devices. The noninvasive

Photoplethysmography (PPG) is a noninvasive optical signal that measures the change in blood volume. This particular signal can be interpreted to yield heart rate (HR) information which is commonly used in medical settings and diagnostics through wearable devices. The noninvasive nature of the measurement of the signal however causes it to be susceptible to noise sources such as motion artifacts (MA). This research starts by describing an end-to-end embedded HR estimation system that leverages noisy PPG and accelerometer data through machine learning (ML) to estimate HR. Through embedded ML for HR estimation, the limitations and challenges are highlighted, and a different HR estimation method is proposed. Next, a point-based value iteration (PBVI) framework is proposed to optimally select HR estimation filters based on the observed user activity. Lastly, the underlying dynamics of the PPG are explored in order to create a sparse dynamic expression of the PPG signal, which can be used to simulate PPG data to improve ML or remove MA from PPG.
Date Created
2023
Agent

Design and Development of an Autonomous Paramotor UAV

171662-Thumbnail Image.png
Description
This document is the culmination of research into small unmanned Powered Parachute aerial vehicles. This dissertation serves to provide designers of small systems with an approach to developing a Powered Parachute Unmanned Aerial Vehicle system, guiding them through the basic

This document is the culmination of research into small unmanned Powered Parachute aerial vehicles. This dissertation serves to provide designers of small systems with an approach to developing a Powered Parachute Unmanned Aerial Vehicle system, guiding them through the basic assumptions, dynamics, and control method. In addition, this dissertation aims to generate a reliable and generalized framework of dynamic design and control methods for autonomous Powered Parachute aircraft. The simulation methods in this paper assist in developing a consistent and robust unmanned system for applying Powered Parachutes as an alternative to multirotor or fixed-wing aircraft.The first chapter serves as a primer on the historical applications of small Unmanned Systems and Powered Parachutes and gives an overview of the requirements for building an autonomous Powered Parachutes; the information within this chapter provides justification background for the second chapter on Powered Parachute dynamics. In the dynamics chapter, equations of motion are derived using engineering first principles. This chapter also discusses alternative methods of improving the control and robustness of the Powered Parachute airframe. The dynamics model is used in all further chapters to develop a generalized control system to operate such a model autonomously. Chapter three of this document focuses on developing simulations from the dynamics described in the previous chapter, laying the groundwork for guidance, navigation, and control algorithms ahead. Chapters four and onwards refine the autonomous control of the Powered Parachute aircraft for real-world scenarios, discussing correction factors and minimizing the errors present in current sensor systems. Chapter five covers the development of an additional adaptive controller which uses a Sigma-Pi Neural network integrated into the final control loop. Chapter six develops advanced control methods for the Powered Parachute airframe, including simulations on a novel proposed thrust vectoring method. Finally, chapter seven discusses results accumulated from testing an experimental prototype.
Date Created
2022
Agent