Technology Transformations: SmartAid - An Intelligent First Aid Kit

133010-Thumbnail Image.png
Description
SmartAid aims to target a small, yet relevant issue in a cost effective, easily replicable, and innovative manner. This paper outlines how to replicate the design and building process to create an intelligent first aid kit. SmartAid utilizes Alexa Voice

SmartAid aims to target a small, yet relevant issue in a cost effective, easily replicable, and innovative manner. This paper outlines how to replicate the design and building process to create an intelligent first aid kit. SmartAid utilizes Alexa Voice Service technologies to provide a new and improved way to teach users about the different types of first aid kit items and how to treat minor injuries, step by step. Using Alexa and RaspberryPi, SmartAid was designed as an added attachment to first aid kits. Alexa Services were installed into a RaspberryPi to create a custom Amazon device, and from there, using the Alexa Interaction Model and the Lambda function services, SmartAid was developed. After the designing and coding of the application, a user guide was created to provide users with information on what items are included in the first aid kit, what types of injuries can be treated through first aid, and how to use SmartAid. The
application was tested for its usability and practicality by a small sample of students. Users provided suggestions on how to make the application more versatile and functional, and confirmed that the application made first aid easier and was something that they could see themselves using. While this application is not aimed to replace the current physical guide solution completely, the findings of this project show that SmartAid has potential to stand in as an improved, easy to use, and convenient alternative for first aid guidance.
Date Created
2019-05
Agent

Dining Hall Web Application

133853-Thumbnail Image.png
Description
For my thesis project, I have developed a cash register web application for the Arizona State University Barrett Dining Hall. I previously worked at the Barrett Dining Hall, and I would occasionally step in as a cashier. This work is

For my thesis project, I have developed a cash register web application for the Arizona State University Barrett Dining Hall. I previously worked at the Barrett Dining Hall, and I would occasionally step in as a cashier. This work is how I came to be familiar with the system and all its inefficiencies. The system requires multiple user inputs to implement even the most basic of tasks, is not user-friendly, and therefore very prone to error. In the event that multiple incorrect inputs are entered, the software will freeze, and the user will have to turn off the computer and turn it back on. In theory, this application is an improvement over the software system that is currently in place in that the user interface has been specifically designed to be user-friendly. This application reduces the number of required user inputs by automating certain tasks (such as pricing and determining the meal period), thereby reducing the chance of user error. It is also an improvement in that it allows students to log in to the system to view how many meals they have left, how much M&G is in their account, and how many guest passes they have left. This functionality is extremely important because this is a feature that is not currently in place, and is something that students have actively complained about. Currently, if students want to check on their meal plan, they have to either physically go to a dining hall and ask the cashier, or call a toll-free number. The two technologies used to develop this application are C# and XML. These technologies were chosen because I wanted to learn something new for this project to broaden my knowledge. I also happened to be taking a class at the start of this project that utilized C# and XML for Web Applications, and it seemed like the perfect opportunity to transfer over the skills I had been learning.
Date Created
2018-05
Agent

LEGv8 Runtime Simulator

134079-Thumbnail Image.png
Description
This project is a full integrated development environment implementing the LEGv8 assembly language standard, to be used in classroom settings. The LEGv8 assembly language is defined by the ARM edition of "Computer Organization and Design: The Hardware/Software Interface" by David

This project is a full integrated development environment implementing the LEGv8 assembly language standard, to be used in classroom settings. The LEGv8 assembly language is defined by the ARM edition of "Computer Organization and Design: The Hardware/Software Interface" by David A. Patterson and John L. Hennessy as a more approachable alternative to the full ARMv8 instruction set. The MIPS edition of that same book is used in the Computer Organization course at ASU. This class makes heavy use of the "MARS" MIPS simulator, which allows students to write and run their own MIPS assembly programs. Writing assembly language programs is a key component of the course, as assembly programs have many design difficulties as compared to a high-level language. This project is a fork of the MARS project. The interface and functionality remain largely the same aside from the change to supporting the LEGv8 syntax and instruction set. Faculty used to the MARS environment from teaching Computer Organization should only have to adjust to the new language standard, as the editor and environment will be familiar. The available instructions are basic arithmetic/logical operations, memory interaction, and flow control. Both floating-point and integer operations are supported, with limited support of conditional execution. Only branches can be conditionally executed, per LEGv8. Directives remain in the format supported by MARS, as documentation on ARM-style directives is both sparse and agreeable to this standard. The operating system functions supported by the MARS simulator also remain, as there is no generally standardized requirements for operating system interactions.
Date Created
2017-12
Agent

Blockchain Design and Simulation

134157-Thumbnail Image.png
Description
This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features

This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features a brief overview of public interest and current implementations of blockchain before stating potential use cases for blockchain simulation software. The paper then gives a brief literature review of blockchain's role, both as a disruptive technology and a foundational technology. The literature review also addresses the potential and difficulties regarding the use of blockchain in Internet of Things (IoT) networks, and also describes the limitations of blockchain in general regarding computational intensity, storage capacity, and network architecture. Next, the paper gives the specification for a generic blockchain structure, with summaries on the behaviors and purposes of transactions, blocks, nodes, miners, public & private key cryptography, signature validation, and hashing. Finally, the author gives an overview of their specific implementation of the blockchain using C/C++ and OpenSSL. The overview includes a brief description of all the classes and data structures involved in the implementation, including their function and behavior. While the implementation meets the requirements set forward in the specification, the results are more qualitative and intuitive, as time constraints did not allow for quantitative measurements of the network simulation. The paper concludes by discussing potential applications for the simulator, and the possibility for future hardware implementations of blockchain.
Date Created
2017-12
Agent

Exploring Computational Thinking in 9-12 Education: Developing a Computer Science Curriculum for Bioscience High School

135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
Date Created
2016-05
Agent

Approaches to Minimum d-Degree Arrangement

135251-Thumbnail Image.png
Description
Many systems in the world \u2014 such as cellular networks, the post service, or transportation pathways \u2014 can be modeled as networks or graphs. The practical applications of graph algorithms generally seek to achieve some goal while minimizing some cost

Many systems in the world \u2014 such as cellular networks, the post service, or transportation pathways \u2014 can be modeled as networks or graphs. The practical applications of graph algorithms generally seek to achieve some goal while minimizing some cost such as money or distance. While the minimum linear arrangement (MLA) problem has been widely-studied amongst graph ordering and embedding problems, there have been no developments into versions of the problem involving degree higher than 2. An application of our problem can be seen in overlay networks in telecommunications. An overlay network is a virtual network that is built on top of another network. It is a logical network where the links between nodes represent the physical paths connecting the nodes in the underlying infrastructure. The underlying physical network may be incomplete, but as long as it is connected, we can build a complete overlay network on top of it. Since some nodes may be overloaded by traffic, we can reduce the strain on the overlay network by limiting the communication between nodes. Some edges, however, may have more importance than others so we must be careful about our selection of which nodes are allowed to communicate with each other. The balance of reducing the degree of the network while maximizing communication forms the basis of our d-degree minimum arrangement problem. In this thesis we will look at several approaches to solving the generalized d-degree minimum arrangement d-MA problem where we embed a graph onto a subgraph of a given degree. We first look into the requirements and challenges of solving the d-MA problem. We will then present a polynomial-time heuristic and compare its performance with the optimal solution derived from integer linear programming. We will show that a simple (d-1)-ary tree construction provides the optimal structure for uniform graphs with large requests sets. Finally, we will present experimental data gathered from running simulations on a variety of graphs to evaluate the efficiency of our heuristic and tree construction.
Date Created
2016-05
Agent

Automated Testing of Web Services

135246-Thumbnail Image.png
Description
The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way

The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order to ensure their reliability and accuracy. This project explores different ways in which services can be tested and evaluated through the design of various testing techniques and their implementations in a web application, which can be used by students or developers to test their web services.
Date Created
2016-05
Agent

Tenga: A Case Study on Building Web Applications

135236-Thumbnail Image.png
Description
Tenga is an e-commerce demo web application for students studying Distributed Software Development and Software Integration and Engineering at Arizona State University (ASU). The application, written in C#, aims to empower students to understand how complex systems are build. Complementing

Tenga is an e-commerce demo web application for students studying Distributed Software Development and Software Integration and Engineering at Arizona State University (ASU). The application, written in C#, aims to empower students to understand how complex systems are build. Complementing the two courses taught at ASU, it seeks to demonstrate how the concepts taught in the two classes can be applied to the real world. In addition to the practical software development process, Tenga also bring in the topics that students are inexperienced with such as recommendation systems and ranking algorithms. Tenga is going to be used in classrooms to help students to learn fundamental issues in Web software development and software integration and to understand tools and skill sets required to built a web application.
Date Created
2016-05
Agent

Just-in-Time Teaching and Learning Classroom Management System Software Application

137828-Thumbnail Image.png
Date Created
2012-12
Agent

Event Searching Web site

Description
Fiddlevent is an event searching website written in Ruby on Rails. Fiddlevent enables any person to go online and find local events that interest him. Fiddlevent also enables merchants to post their events online. Fiddlevent explores all challenges of website

Fiddlevent is an event searching website written in Ruby on Rails. Fiddlevent enables any person to go online and find local events that interest him. Fiddlevent also enables merchants to post their events online. Fiddlevent explores all challenges of website development, such as project management, database design, user interface design, deployment and the software development lifecycle. Fiddlevent aims to utilize best practices for website and software development.
Date Created
2013-05
Agent