Exploring Deep Learning Vulnerability: Attack and Defense

171862-Thumbnail Image.png
Description
Deep neural networks have been shown to be vulnerable to adversarial attacks. Typical attack strategies alter authentic data subtly so as to obtain adversarial samples that resemble the original but otherwise would cause a network's misbehavior such as a high

Deep neural networks have been shown to be vulnerable to adversarial attacks. Typical attack strategies alter authentic data subtly so as to obtain adversarial samples that resemble the original but otherwise would cause a network's misbehavior such as a high misclassification rate. Various attack approaches have been reported, with some showing state-of-the-art performance in attacking certain networks. In the meanwhile, many defense mechanisms have been proposed in the literature, some of which are quite effective for guarding against typical attacks. Yet, most of these attacks fail when the targeted network modifies its architecture or uses another set of parameters and vice versa. Moreover, the emerging of more advanced deep neural networks, such as generative adversarial networks (GANs), has made the situation more complicated and the game between the attack and defense is continuing. This dissertation aims at exploring the venerability of the deep neural networks by investigating the mechanisms behind the success/failure of the existing attack and defense approaches. Therefore, several deep learning-based approaches have been proposed to study the problem from different perspectives. First, I developed an adversarial attack approach by exploring the unlearned region of a typical deep neural network which is often over-parameterized. Second, I proposed an end-to-end learning framework to analyze the images generated by different GAN models. Third, I developed a defense mechanism that can secure the deep neural network against adversarial attacks with a defense layer consisting of a set of orthogonal kernels. Substantial experiments are conducted to unveil the potential factors that contribute to attack/defense effectiveness. This dissertation also concludes with a discussion of possible future works of achieving a robust deep neural network.
Date Created
2022
Agent

Generative Models for Trajectory Prediction

168417-Thumbnail Image.png
Description
Trajectory forecasting is used in many fields such as vehicle future trajectory prediction, stock market price prediction, human motion prediction and so on. Also, robots having the capability to reason about human behavior is an important aspect in human robot

Trajectory forecasting is used in many fields such as vehicle future trajectory prediction, stock market price prediction, human motion prediction and so on. Also, robots having the capability to reason about human behavior is an important aspect in human robot interaction. In trajectory prediction with regards to human motion prediction, implicit learning and reproduction of human behavior is the major challenge. This work tries to compare some of the recent advances taking a phenomenological approach to trajectory prediction. \par The work is expected to mainly target on generating future events or trajectories based on the previous data observed across many time intervals. In particular, this work presents and compares machine learning models to generate various human handwriting trajectories. Although the behavior of every individual is unique, it is still possible to broadly generalize and learn the underlying human behavior from the current observations to predict future human writing trajectories. This enables the machine or the robot to generate future handwriting trajectories given an initial trajectory from the individual thus helping the person to fill up the rest of the letter or curve. This work tests and compares the performance of Conditional Variational Autoencoders and Sinusoidal Representation Network models on handwriting trajectory prediction and reconstruction.
Date Created
2021
Agent

Hana: An Open-Domain Chatbot Application for Language Learning

130936-Thumbnail Image.png
Description
Learning a new language can be very challenging. One significant aspect of learning a language is learning how to have fluent verbal and written conversations with other people in that language. However, it can be difficult to find other people

Learning a new language can be very challenging. One significant aspect of learning a language is learning how to have fluent verbal and written conversations with other people in that language. However, it can be difficult to find other people available with whom to practice conversations. Additionally, total beginners may feel uncomfortable and self-conscious when speaking the language with others. In this paper, I present Hana, a chatbot application powered by deep learning for practicing open-domain verbal and written conversations in a variety of different languages. Hana uses a pre-trained medium-sized instance of Microsoft's DialoGPT in order to generate English responses to user input translated into English. Google Cloud Platform's Translation API is used to handle translation to and from the language selected by the user. The chatbot is presented in the form of a browser-based web application, allowing users to interact with the chatbot in both a verbal or text-based manner. Overall, the chatbot is capable of having interesting open-domain conversations with the user in languages supported by the Google Cloud Translation API, but response generation can be delayed by several seconds, and the conversations and their translations do not necessarily take into account linguistic and cultural nuances associated with a given language.
Date Created
2020-12