Betavoltaic Powered Implantable Pacemakers

136707-Thumbnail Image.png
Description
Pacemakers in the early 1970s were powered by betavoltaic devices which provided long lasting battery life. The betavoltaic devices also emitted gamma radiation due to inadvertent radioisotope contamination, which could not be completely shielded. The betavoltaic devices were quickly replaced

Pacemakers in the early 1970s were powered by betavoltaic devices which provided long lasting battery life. The betavoltaic devices also emitted gamma radiation due to inadvertent radioisotope contamination, which could not be completely shielded. The betavoltaic devices were quickly replaced by lithium batteries after their invention, and betavoltaics were abandoned. Modern technological advancements made it possible to isolate beta emitting radioisotopes properly and achieve better energy conversion efficiencies which revived the topic of betavoltaics. This research project has studied state-of-the-art pacemakers and modern radioactive power sources in order to determine if modern pacemakers can be safely nuclear powered and if that is a reasonable combination.
Date Created
2014-12
Agent

NONLINEAR SUPER RESOLVING ARRAYS

136194-Thumbnail Image.png
Description
Generally, increasing the electrical size of an antenna will increase the directivity of the antenna. In the case of an array of identical antennas with uniform spacing, the electrical size can be increased by increasing the number of elements. However,

Generally, increasing the electrical size of an antenna will increase the directivity of the antenna. In the case of an array of identical antennas with uniform spacing, the electrical size can be increased by increasing the number of elements. However, directivity can be further increased by performing signal processing on the signals received by elements of an antenna array. This thesis focuses primarily on reproducing and expanding upon a method to increase the directivity of a two-element array using non-linear transmission lines periodically loaded with varactor diodes, which act as harmonic multipliers. Simulation and circuit design is performed using Keysight Advanced Design System, a microwave circuit simulation software package. Furthermore, a hardware implementation is discussed and recommendations are made for construction of the hardware array. Finally, possible expansion of the two-element array to a four or more element array is discussed, and preliminary simulations are examined.
Date Created
2015-05
Agent

Multi-Static Space-Time-Frequency Channel Modeling

135912-Thumbnail Image.png
Description
Radio communication has become the dominant form of correspondence in modern society. As the demand for high speed communication grows, the problems associated with an expanding consumer base and limited spectral access become more difficult to address. One communications system

Radio communication has become the dominant form of correspondence in modern society. As the demand for high speed communication grows, the problems associated with an expanding consumer base and limited spectral access become more difficult to address. One communications system in which people commonly find themselves is the multiple access cellular network. Users operate within the same geographical area and bandwidth, so providing access to every user requires advanced processing techniques and careful subdivision of spectral access. This is known as the multiple access problem. This paper addresses this challenge in the context of airborne transceivers operating at high altitudes and long ranges. These operators communicate by transmitting a signal through a target scattering field on the ground without a direct line of sight to the receiver. The objective of this investigation is to develop a model for this communications channel, identify and quantify the relevant characteristics, and evaluate the feasibility of using it to effectively communicate.
Date Created
2015-12
Agent

Solar Powered Quadcopter

135896-Thumbnail Image.png
Description
The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery

The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only flight time of a quadcopter loaded with a solar array and increase that flight time by 33% with additional power provided by solar cells. The major concepts explored throughout this project are quadcopter functionality and capability and solar cell power production. In order to combine these technologies, the solar power and quadcopter components were developed and analyzed individually before connecting the solar array to the quadcopter circuit and testing the design as a whole. Several solar copter models were initially developed, resulting in multiple unique quadcopter and solar cell array designs which underwent preliminary testing before settling on a finalized design which proved to be the most effective and underwent final timed flight tests. Results of these tests are showing that the technologies complement each other as anticipated and highlight promising results for future development in this area, in particular the development of a drone running on solar power alone. Applications for a product such as this are very promising in many fields, including the industries of power, defense, consumer goods and services, entertainment, marketing, and medical. Also, becoming a more popular device for UAV hobbyists, such developments would be very appealing for leisure flying and personal photography purposes as well.
Date Created
2015-12
Agent

Wireless Sensors and Actuators to Enhance Golf Putting Practice

135872-Thumbnail Image.png
Description
The team has designed and built a golf swing analyzer that informs the user of his mistakes while putting with a golf club. The team also interfaced a Linux program with the analyzer that allows the user to review the

The team has designed and built a golf swing analyzer that informs the user of his mistakes while putting with a golf club. The team also interfaced a Linux program with the analyzer that allows the user to review the flaws in his golf swing. In addition, the application is more personalized than existing devices and tailored to the individual based on his level of experience. The analyzer consists of an accelerometer, gyroscope, magnetometer, vibration motor, and microcontroller that are connected on a board that attaches to the top of the shaft of a golf club, fitting inside a 3D printed case. The team has assembled all of the necessary hardware, and is able to successfully display critical parameters of a golf putt, as well as send instant feedback to the user. The final budget for this project was $378.24
Date Created
2015-12
Agent