Reprising the work of Kolpakov and Martelli, a manifold is constructed by face pairings of a four dimensional polytope, the 24-cell. The resulting geometry is a single cusped hyperbolic 4-manifold of finite volume. A short discussion of its geometry and underlying topology is included.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$…
In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group) be the $\epsilon_i$-eigenspace component of the $p$-Sylow subgroup of the class group of the field at the $m$-th level in a $\mathbb{Z}_p$-extension; and let $IACG^i_m$ (Iwasawa analytic class group) be ${\mathbb{Z}_p[[T]]/((1+T)^{p^m}-1,f(T,\omega^{1-i}))}$, where $f$ is the associated Iwasawa power series. It is expected that $CG_m^i$ and $IACG^i_m$ be isomorphic, providing us with a powerful connection between algebraic and analytic techniques; however, as of yet, this isomorphism is unestablished in general. I consider the existence and the properties of an exact sequence $$0\longrightarrow\ker{\longrightarrow}CG_m^i{\longrightarrow}IACG_m^i{\longrightarrow}\textrm{coker}\longrightarrow0.$$ In the case of a $\mathbb{Z}_p$-extension where the Main Conjecture is established, there exists a pseudo-isomorphism between the respective inverse limits of $CG_m^i$ and $IACG_m^i$. I consider conditions for when such a pseudo-isomorphism immediately gives the existence of the desired exact sequence, and I also consider work-around methods that preserve cardinality for otherwise. However, I primarily focus on constructing conditions to verify if a given $m$ is sufficiently large that the kernel and cokernel of the above exact sequence have become well-behaved, providing similarity of growth both in the size and in the structure of $CG_m^i$ and $IACG_m^i$; as well as conditions to determine if any such $m$ exists. The primary motivating idea is that if $IACG_m^i$ is relatively easy to work with, and if the relationship between $CG_m^i$ and $IACG_m^i$ is understood; then $CG_m^i$ becomes easier to work with. Moreover, while the motivating framework is stated concretely in terms of the cyclotomic $\mathbb{Z}_p$-extension of $p$-power roots of unity, all results are generally applicable to arbitrary $\mathbb{Z}_p$-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet abstracted, algebraic results on maps between inverse limits.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)