Design for the Methodological Approach of Mechanical Torque Testing of 3D Printed Gears

Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

Date Created
2023-05
Agent

Design for the Methodological Approach of Mechanical Torque Testing of 3D Printed Gears

Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

Date Created
2023-05
Agent

The Exploration, Design, and Construction of Roller Coasters

Description

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component design, a scale model roller coaster was designed. The physics of the roller coaster and its structures were analyzed and a scale model was produced. Afterward, an accelerometer was used to collect G force data as the cart moved along the track. However, the collected data differed from the expected results, as the launch speed was higher than predicted due to more friction than anticipated. As a result, further optimization of the design and models used to design the scale model roller coasters is necessary.

Date Created
2023-05
Agent

The Exploration, Design, and Construction of Roller Coasters

Description

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component design, a scale model roller coaster was designed. The physics of the roller coaster and its structures were analyzed and a scale model was produced. Afterward, an accelerometer was used to collect G force data as the cart moved along the track. However, the collected data differed from the expected results, as the launch speed was higher than predicted due to more friction than anticipated. As a result, further optimization of the design and models used to design the scale model roller coasters is necessary.

Date Created
2023-05
Agent

Conceptual Composite Wing Design

161914-Thumbnail Image.png
Description
Automation has become a staple in high volume manufacturing, where the consistency and quality of a product carries as much importance as the quantity produced. The Aerospace Industry has a vested interest in expanding the application of automation beyond simply

Automation has become a staple in high volume manufacturing, where the consistency and quality of a product carries as much importance as the quantity produced. The Aerospace Industry has a vested interest in expanding the application of automation beyond simply manufacturing. In this project, the process of systems engineering has been applied to the Conceptual Design Phase of product development; specifically, the Preliminary Structural Design of a Composite wing for an Unmanned Air Vehicle (UAV). Automated structural analysis can be used to develop a composite wing structure that can be directly rendered in Computer Aided Drafting (CAD) and validated using Finite Element Analysis (FEA). This concept provides the user with the ability to quickly iterate designs and demonstrates how different the “optimal light weight” composite structure must look for UAV systems of varied weight, range, and flight maneuverability.
Date Created
2021
Agent

Mathematical Modeling of Air Bladders for use as an Orthotic

Description
Due to the Human foot constantly growing at a rapid pace, typical gel and mold orthotics quickly become ineffective as they no longer fit the foot properly. In pediatric patients, this situation is even more pronounced as their feet change

Due to the Human foot constantly growing at a rapid pace, typical gel and mold orthotics quickly become ineffective as they no longer fit the foot properly. In pediatric patients, this situation is even more pronounced as their feet change geometry at an even more rapid rate. This project consists of designing an adjustable sizing Pediatric Orthotic for use in children as well as adult patient’s shoes to provide better foot support than not using one at all, or for that matter an inappropriately sized orthotic. This idea incorporates multiple air bladders that can hold pressure and adjust shape as is necessary to best accommodate the patient’s foot geometry to reduce the deformation and average stress presented within the foot. Results will be obtained by running simulation models of these phenomena in MATLAB as well as Ansys softwares. From the results, by incorporating two bladders into the middle arch of a ‘control’ patient who has a perfectly symmetric arch, maximum deformation of the foot was reduced by approximately 17%. Under this same scenario, average stress in the foot dropped by approximately 13%. In a more abnormal ‘experimental’ case, of a largely asymmetric arch, it was found that max deformation and average stress in the foot dropped by 21% and 17% respectively. This leads to the conclusion that incorporating this design will indeed lower the stress and fulfill the requirement of an orthotic while also being a removable and adjustable air bladder to fulfill the adjustability constraint.
Date Created
2020-12
Agent

Dyanmics of Oversteer: Modelling Drift by Solving a System of Equations

Description
The dynamics of friction as they relate to automobile behavior have been heavily analyzed under conditions that are favorable and predictable in the realm of daily driving. The scope of this project is to investigate behavior of slip in unfavorable

The dynamics of friction as they relate to automobile behavior have been heavily analyzed under conditions that are favorable and predictable in the realm of daily driving. The scope of this project is to investigate behavior of slip in unfavorable conditions and develop a mathematical solution that allows users to predict behavior of oversteer and excessive sideslip. I am fascinated by the topic as I have developed a background in the sport of drifting (controlled oversteer) and would like to contribute to the understanding of this lesser appreciated science. Highly valued components of the project such as velocities, forces, coefficients of friction, steering angles, slip angles, and multi-wheel analysis will all lead to a deeper understanding of relationships between aspects of a vehicle undergoing oversteer.
Date Created
2020-05
Agent

DYNAMICS OF OVERSTEER: MODELLING DRIFT BY SOLVING A SYSTEM OF EQUATIONS

Description
The dynamics of friction as they relate to automobile behavior have been heavily analyzed under conditions that are favorable and predictable in the realm of daily driving. The scope of this project is to investigate behavior of slip in unfavorable

The dynamics of friction as they relate to automobile behavior have been heavily analyzed under conditions that are favorable and predictable in the realm of daily driving. The scope of this project is to investigate behavior of slip in unfavorable conditions and develop a mathematical solution that allows users to predict behavior of oversteer and excessive sideslip. I am fascinated by the topic as I have developed a background in the sport of drifting (controlled oversteer) and would like to contribute to the understanding of this lesser appreciated science. Highly valued components of the project such as velocities, forces, coefficients of friction, steering angles, slip angles, and multi-wheel analysis will all lead to a deeper understanding of relationships between aspects of a vehicle undergoing oversteer.
Date Created
2020-12
Agent

Evaluation of Current Helmet Technologies for Redesign of Cycling Helmets

131304-Thumbnail Image.png
Description
Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same

Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly getting developed and testing but the helmet is lagging behind. This project consists of designing and testing different cycling helmets through ANSYS simulations to determine the ideal geometry and features a cycling helmet must include, reducing the stress that the head experiences upon impact during a fall.
Date Created
2020-05
Agent

Early Wing Structural Design for Stiffness and Frequency Response

156927-Thumbnail Image.png
Description
This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the

This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass such as fuel loading and control surfaces. To accomplish this, an improvement is made to existing design tools utilizing rule based automated design to generate wing torque box geometry from a specific wing outer mold-line. Simple analysis on deflection and inferred stiffness shows how early conceptual design choices can strongly impact the stiffness of the structure. The impacts of design choices and how the buckling constraints drive structural weight in particular examples are discussed. The model is then carried further to include a finite element model (FEM) to analyze resulting mode shapes and frequencies for use in aeroelastic analysis. The natural frequencies of several selected wing torque boxes across a range of loading cases are compared.
Date Created
2018
Agent