Gene and MicroRNA Expression Responses to Exercise; Relationship With Insulin Sensitivity
Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.
Methods and Findings: Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene.
Conclusions: These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.
- Author (aut): McLean, Carrie
- Author (aut): Mielke, Clinton
- Author (aut): Cordova, Jeanine
- Author (aut): Langlais, Paul R.
- Author (aut): Bowen, Benjamin
- Author (aut): Miranda, Danielle
- Author (aut): Coletta, Dawn
- Author (aut): Mandarino, Lawrence
- Contributor (ctb): College of Health Solutions