Studies on epidemic control in structured populations with applications to influenza

154271-Thumbnail Image.png
Description
The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again urgency to an old question: What are the limits on prediction and what can be proposed that is useful in the face of an epidemic outbreak?

This thesis

The 2009-10 influenza and the 2014-15 Ebola pandemics brought once again urgency to an old question: What are the limits on prediction and what can be proposed that is useful in the face of an epidemic outbreak?

This thesis looks first at the impact that limited access to vaccine stockpiles may have on a single influenza outbreak. The purpose is to highlight the challenges faced by populations embedded in inadequate health systems and to identify and assess ways of ameliorating the impact of resource limitations on public health policy.

Age-specific per capita constraint rates play an important role on the dynamics of communicable diseases and, influenza is, of course, no exception. Yet the challenges associated with estimating age-specific contact rates have not been decisively met. And so, this thesis attempts to connect contact theory with age-specific contact data in the context of influenza outbreaks in practical ways. In mathematical epidemiology, proportionate mixing is used as the preferred theoretical mixing structure and so, the frame of discussion of this dissertation follows this specific theoretical framework. The questions that drive this dissertation, in the context of influenza dynamics, proportionate mixing, and control, are:

I. What is the role of age-aggregation on the dynamics of a single outbreak? Or simply speaking, does the number and length of the age-classes used to model a population make a significant difference on quantitative predictions?

II. What would the age-specific optimal influenza vaccination policies be? Or, what are the age-specific vaccination policies needed to control an outbreak in the presence of limited or unlimited vaccine stockpiles?

Intertwined with the above questions are issues of resilience and uncertainty including, whether or not data collected on mixing (by social scientists) can be used effectively to address both questions in the context of influenza and proportionate mixing. The objective is to provide answers to these questions by assessing the role of aggregation (number and length of age classes) and model robustness (does the aggregation scheme selected makes a difference on influenza dynamics and control) via comparisons between purely data-driven model and proportionate mixing models.
Date Created
2016
Agent

Proactive Spatiotemporal Resource Allocation and Predictive Visual Analytics for Community Policing and Law Enforcement

129367-Thumbnail Image.png
Description

In this paper, we present a visual analytics approach that provides decision makers with a proactive and predictive environment in order to assist them in making effective resource allocation and deployment decisions. The challenges involved with such predictive analytics processes

In this paper, we present a visual analytics approach that provides decision makers with a proactive and predictive environment in order to assist them in making effective resource allocation and deployment decisions. The challenges involved with such predictive analytics processes include end-users' understanding, and the application of the underlying statistical algorithms at the right spatiotemporal granularity levels so that good prediction estimates can be established. In our approach, we provide analysts with a suite of natural scale templates and methods that enable them to focus and drill down to appropriate geospatial and temporal resolution levels. Our forecasting technique is based on the Seasonal Trend decomposition based on Loess (STL) method, which we apply in a spatiotemporal visual analytics context to provide analysts with predicted levels of future activity. We also present a novel kernel density estimation technique we have developed, in which the prediction process is influenced by the spatial correlation of recent incidents at nearby locations. We demonstrate our techniques by applying our methodology to Criminal, Traffic and Civil (CTC) incident datasets.

Date Created
2014-12-01
Agent

On the dynamics of infectious diseases in modern landscapes: urban settings and drug resistance

152574-Thumbnail Image.png
Description
Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large burden is partly due to some pathogens having found suitable

Extraordinary medical advances have led to significant reductions in the burden of infectious diseases in humans. However, infectious diseases still account for more than 13 million annual deaths. This large burden is partly due to some pathogens having found suitable conditions to emerge and spread in denser and more connected host populations, and others having evolved to escape the pressures imposed by the rampant use of antimicrobials. It is then critical to improve our understanding of how diseases spread in these modern landscapes, characterized by new host population structures and socio-economic environments, as well as containment measures such as the deployment of drugs. Thus, the motivation of this dissertation is two-fold. First, we study, using both data-driven and modeling approaches, the the spread of infectious diseases in urban areas. As a case study, we use confirmed-cases data on sexually transmitted diseases (STDs) in the United States to assess the conduciveness of population size of urban areas and their socio-economic characteristics as predictors of STD incidence. We find that the scaling of STD incidence in cities is superlinear, and that the percent of African-Americans residing in cities largely determines these statistical patterns. Since disparities in access to health care are often exacerbated in urban areas, within this project we also develop two modeling frameworks to study the effect of health care disparities on epidemic outcomes. Discrepant results between the two approaches indicate that knowledge of the shape of the recovery period distribution, not just its mean and variance, is key for assessing the epidemiological impact of inequalities. The second project proposes to study, from a modeling perspective, the spread of drug resistance in human populations featuring vital dynamics, stochasticity and contact structure. We derive effective treatment regimes that minimize both the overall disease burden and the spread of resistance. Additionally, targeted treatment in structured host populations may lead to higher levels of drug resistance, and if drug-resistant strains are compensated, they can spread widely even when the wild-type strain is below its epidemic threshold.
Date Created
2014
Agent