Utilization of Passive Samplers for Water Quality Monitoring of Hexavalent Chromium in Water Treatment Plants

136883-Thumbnail Image.png
Description
The current EPA regulation for total chromium in drinking water is the MCL standard of 0.1 milligrams per liter or 100 parts per billion (ppb) to avoid dermatological effects. With a toxicology study released in 2008 by the Department of

The current EPA regulation for total chromium in drinking water is the MCL standard of 0.1 milligrams per liter or 100 parts per billion (ppb) to avoid dermatological effects. With a toxicology study released in 2008 by the Department of Health and Human Services noting that hexavalent chromium is carcinogenic, the EPA is currently reviewing this MCL standard. During this review, the EPA provides monitoring guidance that requires quarterly sampling of surface water for hexavalent chromium. However, these samples monitor the instant in time that they were taken, and do not account for varying concentrations that are time-dependent. This research seeks to develop a method for monitoring hexavalent chromium in water. Using ion exchange technology, passive samplers were developed and installed at the Chandler Water Treatment Plant for a week-long monitoring event. Results show that passive samplers using ion exchange technology provide an accurate assessment of the average concentration of total chromium within the water treatment plant's effluent with 90.3% recovery of Cr(VI) in SIR-100 resin and 62.6% recovery in SIR-700.
Date Created
2014-05
Agent

Active Sampling Device for Determining Pollutants in Surface and Pore Water: The In Situ Sampler for Biphasic Water Monitoring

128572-Thumbnail Image.png
Description

We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to

We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040–0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

Date Created
2016-02-24
Agent

Methods and devices for assessment of fiprole pesticides in engineered waterways

154027-Thumbnail Image.png
Description
This dissertation focused on the development and application of state-of-the-art monitoring tools and analysis methods for tracking the fate of trace level contaminants in the natural and built water environments, using fipronil as a model; fipronil and its primary degradates

This dissertation focused on the development and application of state-of-the-art monitoring tools and analysis methods for tracking the fate of trace level contaminants in the natural and built water environments, using fipronil as a model; fipronil and its primary degradates (known collectively as fiproles) are among a group of trace level emerging environmental contaminants that are extremely potent arthropodic neurotoxins. The work further aimed to fill in data gaps regarding the presence and fate of fipronil in engineered water systems, specifically in a wastewater treatment plant (WWTP), and in an engineered wetland. A review of manual and automated “active” water sampling technologies motivated the development of two new automated samplers capable of in situ biphasic extraction of water samples across the bulk water/sediment interface of surface water systems. Combined with an optimized method for the quantification of fiproles, the newly developed In Situ Sampler for Biphasic water monitoring (IS2B) was deployed along with conventional automated water samplers, to study the fate and occurrence of fiproles in engineered water environments; continuous sampling over two days and subsequent analysis yielded average total fiprole concentrations in wetland surface water (9.9 ± 4.6 to 18.1 ± 4.6 ng/L) and wetland sediment pore water (9.1 ± 3.0 to 12.6 ± 2.1 ng/L). A mass balance of the WWTP located immediately upstream demonstrated unattenuated breakthrough of total fiproles through the WWTP with 25 ± 3 % of fipronil conversion to degradates, and only limited removal of total fiproles in the wetland (47 ± 13%). Extrapolation of local emissions (5–7 g/d) suggests nationwide annual fiprole loadings from WWTPs to U.S. surface waters on the order of about one half to three quarters of a metric tonne. The qualitative and quantitative data collected in this work have regulatory implications, and the sampling tools and analysis strategies described in this thesis have broad applicability in the assessment of risks posed by trace level environmental contaminants.
Date Created
2015
Agent