Platelet Rich Fibrin - The Bridge to Faster Medicine

Description

Medical recovery time continues to be a drawback for many medical diagnoses and procedures. Prolonged recovery affects all aspects of the population, and targets different avenues of everyday life. Avenues such as providing, attending a job, personal objectives in different

Medical recovery time continues to be a drawback for many medical diagnoses and procedures. Prolonged recovery affects all aspects of the population, and targets different avenues of everyday life. Avenues such as providing, attending a job, personal objectives in different ways and even their own well-being. To combat this one area of research that has gained tremendous awareness in recent years is that of platelet-rich fibrin (PRF), which has been utilized across a wide variety of medical fields for the regeneration of soft tissues. PRF, or platelet-rich fibrin, is the next generation treatment of platelet concentrate. PRF is a fibrin matrix composed of platelet cytokines, growth factors and cells used to help wound healing and tissue regeneration. The objective of this thesis is to investigate the potential recovery time difference with PRF incorporation for common medical procedures. The experimental group included three individuals who had PRF treatment at any point during any sort of medical operation. The control group included individuals who did not have PRF treatment at any point and also those who had no prior knowledge of this method of treatment. Results were mixed because of the variative behind the medical procedures. Through observation, PRF treatment improved tolerance of pain, well-being of patients and quality of recovery with three different domains of inquiry per patient testimony. This case-analysis of 6 patients is a preliminary study and therefore inconclusive. PRF is a promising approach and this study suggests that it could potentially be a new medical approach to treatment.

Date Created
2023-05
Agent

The Effects of High-Load Versus Low-Load Resistance Training on Isokinetic Knee Extensor and Flexor Peak Power, Vastus Intermedius, and Vastus Lateralis Muscle Thickness in Untrained Overweight and Obese Adults

158590-Thumbnail Image.png
Description
Sedentary behavior and excessive weight gain have been proven to deteriorate many characteristics of muscle. Low muscular power and mass with excess fat mass are risk factors for a multitude of chronic conditions and functional disabilities. Resistance training (RT) has

Sedentary behavior and excessive weight gain have been proven to deteriorate many characteristics of muscle. Low muscular power and mass with excess fat mass are risk factors for a multitude of chronic conditions and functional disabilities. Resistance training (RT) has long been accepted as a rehabilitative method of maintaining or enhancing muscular performance and composition. There are various methods of determining lower extremity muscular power; however, isokinetic dynamometry has emerged as one of the most accurate and reliable methods in clinical and research settings. Likewise, various methods exist for determining muscle thickness; however, many of those methods are expensive and can expose individuals to radiation. Ultrasonography has emerged as an accurate and reliable alternative to measuring lower extremity muscle thickness. The objective of this study was to assess the effects of high-load/low-volume (HLLV) and low-load/high-volume (LLHV) RT on isokinetic knee extensor and flexor peak power in sedentary, RT naïve, overweight or obese men and women (Body Mass Index ≥ 25 kg/m2). Twenty-one subjects (n = 21) completed this study and were randomized into one of the following groups: control, a HLLV group that performed three sets of 5 repetitions for all exercises until volitional fatigue, and LLHV which performed three sets of 15 repetitions for all exercises until volitional fatigue. Subjects randomized to the RT groups performed full-body exercises routines on three non-consecutive days per week. Changes in isokinetic knee extensor and flexor peak power, quadriceps ultrasound muscle thickness, and right leg segment of dual-energy X-ray absorptiometry (DEXA) scans were measured before and after the 12-week RT intervention. There were no significant differences found in group, time or, group by time interactions for knee extensor and flexor peak power using isokinetic dynamometry. Other than a group interaction for vastus intermedius muscle thickness (P=0.008), no significant interactions or differences were observed for any of the other variables tested. Based on the results of this study, neither high- nor low-load RT resulted in significant differences between intervention groups in peak power of the knee extensors and flexor, muscle thickness changes of the vastus intermedius, and vastus lateralis and, in the right lower extremity segmented body composition measures using DEXA.
Date Created
2020
Agent

Effects of High-Intensity Interval Exercise on Postprandial Fat and Carbohydrate Oxidation, and Endothelial Function, in Healthy Adults

158557-Thumbnail Image.png
Description
Obesity is highly prevalence in United States. Obesity can be seen as a positive energy balance, especially a positive fat balance. This may be due in part to how the human body uses energy sources. When a person overconsumes a

Obesity is highly prevalence in United States. Obesity can be seen as a positive energy balance, especially a positive fat balance. This may be due in part to how the human body uses energy sources. When a person overconsumes a meal that contains high amounts of both carbohydrate and fat, carbohydrate will stimulate its own oxidation and suppress fat oxidation. This can result in a positive fat balance, which could eventually lead to obesity. Also, it has been shown that after consuming a meal endothelial function is frequently impaired for several hours during the postprandial period. Long-term endothelial dysfunction is a major cause of different types of cardiovascular disease. Exercise has been shown to stimulate fat oxidation and, when performed the day before meal ingestion, precondition arteries by enhancing endothelial function in the basal state. However, the acute effect of exercise on postprandial period is unknown. The purpose of this study is to examine the effect of high intensity interval exercise (HIIE) on the substrate oxidation and endothelial function in the postprandial period after consumption of “meal” consisting of a sugar-sweetened beverage (SSB) and a candy bar (480 kcal; ~75% sugar). Five subjects (4 males, 1 female; age=25yr, BMI=25 kg/m2) completed two conditions in random order: 1) no exercise control; 2) high-intensity interval exercise on a cycle ergometer: alternating 1-min intervals at 90-95% HRmax separated by 1-min of active recovery at 50W, for a duration sufficient to expend ~480 kcal. Endothelial function was measured by flow-mediated dilation (FMD) at baseline, and at 1, 2 and 4 hours postprandial. Substrate oxidation was measured by indirect calorimetry during the entire first hour postprandial and then during the last 20 min of hours 2-5 postprandial. Absolute postprandial fat oxidation (g/5 hours) was higher in HIIE (exercise: 5.47 ± 9.97, control: -9.78 ± 3.80; p<0.011). Absolute postprandial carbohydrate oxidation (g/5 hours) was higher in control group (control: 27.79 ± 6.20, exercise: -1.48 ± 7.75; p<0.019). Therefore, these results show that HIIE results in greater fat oxidation during the postprandial period in comparison to a no-exercise control condition. For FMD, there was no significant difference between groups, and no group x time interaction. However, there was a significant time effect (p<0.046), with both groups demonstrating a reduction in FMD during the postprandial period. FMD in the control condition decreased from 12% to 7.5% during the first 2 hours postprandial, and from 11.4% to 7.3% in the HIIE condition. These results indicate that HIIE performed 1 hour prior to ingestion of a SSB and candy bar does not prevent postprandial endothelial dysfunction.
Date Created
2020
Agent

The Effect of Resistance Training on Arterial Stiffness and Central Hemodynamics

158209-Thumbnail Image.png
Description
Cardiovascular disease has long been one of the leading causes of morbidity in the world and places a large burden on the health care system. Exercise has been shown to reduce the risk of developing cardiovascular disease and the risk

Cardiovascular disease has long been one of the leading causes of morbidity in the world and places a large burden on the health care system. Exercise has been shown to reduce the risk of developing cardiovascular disease and the risk factors associated with it. Much of the focus of research has been on aerobic exercise modalities and their effect on these risk factors, and less is known in regard to the effect of resistance training. One novel risk factor for cardiovascular disease is arterial stiffness, specifically aortic stiffness. Aortic stiffness can be measured by carotid-femoral pulse wave velocity (PWV) and central pressure characteristics such as central blood pressures and augmentation index. The objective of this study was to assess the effect that two different 12-week long resistance training interventions would have on these measurements in sedentary, overweight and obese men and women (BMI ≥ 25 kg/m2). Twenty-one subjects completed the study and were randomized into one of the following groups: control, a low repetition/high load (LRHL) group which performed 3 sets of 5 repetitions for all exercises, and a high repetition/low load (HRLL) group which performed 3 sets of 15 repetitions for all exercises. Those in the resistance training groups performed full-body exercise routines on 3 nonconsecutive days of the week. Changes in arterial stiffness, central blood pressures, and brachial blood pressures were measured before and after the 12-week intervention period. PWV showed significant group by time interaction (p= 0.024) but upon post hoc testing no significant differences were observed due to the control group confounding (control: 7.6 ± 0.8 vs. 7.1 ± 0.8, LRHL: 6.7 ± 0.5 vs. 6.9 ± 0.5, HRLL: 7.03 ± 0.67 vs. 6.59). No other significant interactions or differences were observed for any of the variables tested. Based on the results of this study a 12-week long resistance intervention training, neither high nor moderate-intensity resistance training, resulted in improvements in indices of vascular stiffness or central and peripheral blood pressures.
Date Created
2020
Agent

Physiological Effects of High Intensity Interval Training on Women with Breast Cancer Undergoing Anthracycline-based Chemotherapy

131940-Thumbnail Image.png
Description
Estimates indicate that in the United States 1 in 8 women will develop breast cancer in their lifetime. Improved cancer screenings, early detection, and targeted treatments have increased breast cancer survival rates. However, breast cancer patients treated with chemotherapy are

Estimates indicate that in the United States 1 in 8 women will develop breast cancer in their lifetime. Improved cancer screenings, early detection, and targeted treatments have increased breast cancer survival rates. However, breast cancer patients treated with chemotherapy are at an increased risk for cardiovascular disease, functional impairments, and loss of cardiorespiratory fitness. These negative outcomes have implications for early morbidity and mortality. The purpose of this thesis was to test the hypothesis that high-intensity exercise preconditioning (exercise commenced prior to initiating chemotherapy and continued throughout treatment cycles) preserves health-related outcomes in breast cancer patients treated with anthracycline-containing chemotherapy. Here, we present a subset of preliminary data from an ongoing trial (NCT02842658) that is focused on VO2peak and skeletal muscle outcomes from the first 10 participants that have enrolled in the trial. Breast cancer patients (N=10; 50 ± 11 y; 168 ± 4 cm; 92 ± 37 kg; 32.3 ± 12.3 kg/m2) scheduled to receive anthracycline-containing chemotherapy were randomly assigned to one of two interventions: 1) exercise preconditioning, (3 days per week of supervised exercise throughout treatment) or 2) standard of care (attention-control). Pre-testing occurred 1-2 week prior to chemotherapy. The interventions were initiated 1 week prior to chemotherapy and continued throughout anthracycline treatment. Post-testing occurred 3-7 days following the last anthracycline treatment. VO2peak (L/min) was reduced by 16% in the control group (P < 0.05), whereas VO2peak was preserved in the exercise preconditioning group. Trends for greater preservation and/or improvement in the exercise preconditioning group were also observed for lean body mass and peak heart rate. Hand grip strength was not changed in either group (P > 0.05). Both groups demonstrated an increase in ultrasound-derived echogenicity measures of the vastus lateralis (P < 0.05), indicating changes in the composition of the skeletal muscle during treatment. These preliminary data highlight that exercise preconditioning may serve as a strategy to preserve cardiorespiratory fitness and perhaps lean mass during anthracycline treatment of breast cancer. There remains a need for larger, definitive clinical trials to identify strategies to prevent the array of chemotherapy-induced toxicities that are observed in breast cancer patients treated with anthracyclines.
Date Created
2020-05
Agent

Acute Glycemic Response to Different Strategies of Breaking Up Sedentary Time

157600-Thumbnail Image.png
Description
Most studies that explored the health benefits of interrupting sitting time focused on using different modalities (i.e., comparing walking vs standing breaks)33,36,59. However, experimental studies that directly compare patterns of interrupting sitting time through standing only are needed to advance

Most studies that explored the health benefits of interrupting sitting time focused on using different modalities (i.e., comparing walking vs standing breaks)33,36,59. However, experimental studies that directly compare patterns of interrupting sitting time through standing only are needed to advance the field. This study aimed to (i) determine if there is a difference in glucose response between continuous sitting (CS) and two intermittent standing regimes (high frequency, low duration breaks (HFLD) and low frequency, high duration breaks (LFHD)) and (ii) to determine if there is a difference in glucose response between the two strategies (HFLD vs. LFHD).

Ten sedentary employees (mean±SD age 46.8±10.6 years; 70% female) with impaired fasting glucose (mean glucose= 109.0±9.8 mg/dL) participated. Eligible participants were invited to three 7.5 hour laboratory visits where they were randomized to perform each study conditions: (i) CS, (ii) HFLD and (iii) LFHD. Standardized meals (breakfast and lunch) were given with each meal providing 33% of the participant’s total daily caloric needs following a typical American diet (50-60% carbohydrates, 25-30% fat, and 10-20% protein). Participants wore an activPAL device to measure compliance with the sit-stand condition and a continuous glucose monitor to measure post-prandial glucose response. Post-prandial mean glucose, incremental area under the curve and mean amplitude glycemic excursion between conditions were evaluated using linear mixed models.

Participants demonstrated high compliance with the study condition. The results indicated that the mean glucose of the HFLD condition were significantly lower (p< .01) than the CS condition with mean difference of -7.70 (-11.98, -3.42) mg/dL·3.5h and -5.76 (-9.50, -2.03) mg/dL·7h for lunch and total time, respectively. Furthermore, the mean post-prandial glucose during lunch and total time were significantly lower in the HFLD condition compared to the LFHD condition with mean difference of -9.94 (-14.13, -5.74) mg/dL·3.5h and -6.23 (-9.93, -2.52) mg/dL·7h, respectively. No differences were found between the CS and LFHD conditions.

This study provides evidence favoring the use of frequent interruptions in sitting time to improve glycemic control of prediabetic individuals. In contrast, less frequent, although longer bouts of standing resulted in similar post-prandial glucose profile to that of the continuous sitting condition despite total standing time being equal to the LFHD condition.
Date Created
2019
Agent

The effects of high-intensity interval exercise on postprandial fat and carbohydrate oxidation in healthy adults

133299-Thumbnail Image.png
Description
The purpose of this study was to investigate the effects of high intensity interval exercise (HIIE) on postprandial fat and carbohydrate oxidation after a high carbohydrate and fat meal in healthy adults. It was hypothesized that the HIIE would result

The purpose of this study was to investigate the effects of high intensity interval exercise (HIIE) on postprandial fat and carbohydrate oxidation after a high carbohydrate and fat meal in healthy adults. It was hypothesized that the HIIE would result in greater postprandial fat oxidation than the control condition. Three subjects, all non-obese (BMI<30) from the ages of 21-24, underwent a 3 visit protocol. The first visit was to establish a VO2 max (on a cycle ergometer) and the following two were randomized between a control and exercise condition. The exercise condition was comprised of one hour rest to provide baseline data, followed by a 1 minute on (90-95% HR max), one minute off high intensity interval protocol on a cycle ergometer. This was conducted until the same amount of kcal as the standard meal (490 kcal. 250 kcal snickers and 240 kcal sprite) was expended. After the exercise, the participant waited for one hour to minimize the effects of the excess post-exercise oxygen consumption (EPOC) period, and then consumed the meal. Once this was completed, VO2 was measured for the last 10 minutes of every 30 minutes for a full 5 hours postprandial. The same methodology was employed in the control condition except for the exercise protocol. Results showed a significantly greater fat oxidation in the HIIE condition, oxidizing 28 grams, 32 grams, and 27 grams of fat in each of the 3 subjects compared to 14, 16, and 17 grams in the control condition respectively. This supports the notion that HIIE results in greater postprandial fat oxidation compared to seated rest.
Date Created
2018-05
Agent

Changes in Glycemia and Serum Lipids Following a 4-Month mHealth Walking Intervention

135556-Thumbnail Image.png
Description
Walking interventions focused on increasing step counts are typically associated with salutary effects on glycemia, fasting insulin, insulin resistance and blood lipids which may be in turn associated with improvements in cardiorespiratory fitness (peak oxygen uptake – VO2peak) and vascular

Walking interventions focused on increasing step counts are typically associated with salutary effects on glycemia, fasting insulin, insulin resistance and blood lipids which may be in turn associated with improvements in cardiorespiratory fitness (peak oxygen uptake – VO2peak) and vascular stiffness. We hypothesized that a novel 4-month, behavioral economics-based walking intervention would have favorable effects on glucose homeostasis and blood lipids and that these in turn would be related to VO2peak and vascular stiffness (carotid femoral pulse wave velocity – cfPWV).

We carried out secondary analyses on a subsample of sedentary, overweight/obese adults who participated in a 4-month, 2x2, randomized-controlled walking intervention examining the effects of goal setting (static v. adaptive goals) and rewards (immediate v. delayed) on steps/day (N=96). Fasting blood samples (n=58) were collected from participants before and after the intervention. Premenopausal females were in the follicular phase of their menstrual cycles. Lipid and glucose levels were measured using an automated chemistry analyzer, while insulin was measured using radio-immunoassay. Homeostatic model of insulin resistance (HOMA-IR) was calculated using the following formula (HOMA-IR=glucose x insulin / 405). We examined associations [partial correlations (adjusted for age)] between changes in blood biomarkers and VO2peak and cfPWV, irrespective of group, and we used linear mixed models to examine between-group differences in levels of and change in biomarker outcomes.

Groups did not differ in overall levels of, or degree of change in, biomarker outcomes (all p>0.05). Mean changes, irrespective of group, in biomarkers were as follows: glucose Δ= 0.74± 4.5mg/dl; insulin Δ= 0.09 ± 4.1 µU/ml; total cholesterol Δ= 0.24 ± 20.6 mg/dl; HDL-C Δ= 0.27 ± 5.1 mg/dl; LDL-C Δ= 1.3 ± 19.9 mg/dl; triglycerides Δ= 1.7 ± 27.2 mg/dl; HOMA-IR Δ = -.0548 ± 1.05). We found no significant associations between change in biomarker levels and change in VO2peak or change in cfPWV (all correlation coefficients < 0.15; p > 0.05).

A 4-month, behavioral economics-based mHealth intervention focused on increasing steps/day did not bring about favorable changes on markers of glycemia, insulin resistance and blood lipids.
Date Created
2016-05
Agent

Accuracy of Neck Circumference in Classifying Overweight and Obese US Children

128331-Thumbnail Image.png
Description

Objective: To evaluate classification accuracy of NC and compare it with body mass index (BMI) in identifying overweight/obese US children.

Methods: Data were collected from 92 children (boys: 61) aged 7 to 13 over a 2-year period. NC, BMI, and percent

Objective: To evaluate classification accuracy of NC and compare it with body mass index (BMI) in identifying overweight/obese US children.

Methods: Data were collected from 92 children (boys: 61) aged 7 to 13 over a 2-year period. NC, BMI, and percent of body fat (BF%) were measured in each child and their corresponding cut-off values were applied to classify the children as being overweight/obese. Classification accuracy of NC and BMI was systematically investigated for boys and girls in relation to true overweight/obesity categorization as assessed with a criterion measure of BF% (i.e., Bod Pod).

Results: For boys, Cohen’s k (0.25), sensitivity (38.1%), and specificity (85.0%) of NC were smaller in comparison with Cohen’s k (0.57), sensitivity (57.1%), and specificity (95.0%) of BMI in relation to BF% categorization. For girls, Cohen’s k (0.45), sensitivity (50.0%), and specificity (91.3%) of NC were smaller in comparison with Cohen’s k (0.52), sensitivity (50.0%), and specificity (95.7%) of BMI.

Conclusion: NC measurement was not better than BMI in classifying childhood overweight/obesity and, for boys, NC was inferior to BMI. Pediatricians and/or pediatric researchers should be cautious or wary about incorporating NC measurements in their pediatric care and/or research.

Date Created
2014-01-30
Agent

Examination of Different Accelerometer Cut-Points for Assessing Sedentary Behaviors in Children

128881-Thumbnail Image.png
Description

Background: Public health research on sedentary behavior (SB) in youth has heavily relied on accelerometers. However, it has been limited by the lack of consensus on the most accurate accelerometer cut-points as well as by unknown effects caused by accelerometer position

Background: Public health research on sedentary behavior (SB) in youth has heavily relied on accelerometers. However, it has been limited by the lack of consensus on the most accurate accelerometer cut-points as well as by unknown effects caused by accelerometer position (wrist vs. hip) and output (single axis vs. multiple axes). The present study systematically evaluates classification accuracy of different Actigraph cut-points for classifying SB using hip and wrist-worn monitors and establishes new cut-points to enable use of the 3-dimensional vector magnitude data (for both hip and wrist placement).

Methods: A total of 125 children ages 7–13 yrs performed 12 randomly selected activities (from a set of 24 different activities) for 5 min each while wearing tri-axial Actigraph accelerometers on both the hip and wrist. The accelerometer data were categorized as either sedentary or non-sedentary minutes using six previously studied cut-points: 100counts-per-minute (CPM), 200CPM, 300CPM, 500CPM, 800CPM and 1100CPM. Classification accuracy was evaluated with Cohen's Kappa (κ) and new cut-points were identified from Receiver Operating Characteristic (ROC).

Results: Of the six cut-points, the 100CPM value yielded the highest classification accuracy (κ = 0.81) for hip placement. For wrist placement, all of the cut-points produced low classification accuracy (ranges of κ from 0.44 to 0.67). Optimal sedentary cut-points derived from ROC were 554.3CPM (ROC-AUC of 0.99) for vector magnitude for hip, 1756CPM (ROC-AUC of 0.94) for vertical axis for wrist, and 3958.3CPM (ROC-AUC of 0.93) for vector magnitude for wrist placement.

Conclusions: The 100CPM was supported for use with vertical axis for hip placement, but not for wrist placement. The ROC-derived cut-points can be used to classify youth SB with the wrist and with vector magnitude data.

Date Created
2014-04-03
Agent