Audiovisual (AV) integration is a fundamental component of face-to-face communication. Visual cues generally aid auditory comprehension of communicative intent through our innate ability to “fuse” auditory and visual information. However, our ability for multisensory integration can be affected by damage…
Audiovisual (AV) integration is a fundamental component of face-to-face communication. Visual cues generally aid auditory comprehension of communicative intent through our innate ability to “fuse” auditory and visual information. However, our ability for multisensory integration can be affected by damage to the brain. Previous neuroimaging studies have indicated the superior temporal sulcus (STS) as the center for AV integration, while others suggest inferior frontal and motor regions. However, few studies have analyzed the effect of stroke or other brain damage on multisensory integration in humans. The present study examines the effect of lesion location on auditory and AV speech perception through behavioral and structural imaging methodologies in 41 left-hemisphere participants with chronic focal cerebral damage. Participants completed two behavioral tasks of speech perception: an auditory speech perception task and a classic McGurk paradigm measuring congruent (auditory and visual stimuli match) and incongruent (auditory and visual stimuli do not match, creating a “fused” percept of a novel stimulus) AV speech perception. Overall, participants performed well above chance on both tasks. Voxel-based lesion symptom mapping (VLSM) across all 41 participants identified several regions as critical for speech perception depending on trial type. Heschl’s gyrus and the supramarginal gyrus were identified as critical for auditory speech perception, the basal ganglia was critical for speech perception in AV congruent trials, and the middle temporal gyrus/STS were critical in AV incongruent trials. VLSM analyses of the AV incongruent trials were used to further clarify the origin of “errors”, i.e. lack of fusion. Auditory capture (auditory stimulus) responses were attributed to visual processing deficits caused by lesions in the posterior temporal lobe, whereas visual capture (visual stimulus) responses were attributed to lesions in the anterior temporal cortex, including the temporal pole, which is widely considered to be an amodal semantic hub. The implication of anterior temporal regions in AV integration is novel and warrants further study. The behavioral and VLSM results are discussed in relation to previous neuroimaging and case-study evidence; broadly, our findings coincide with previous work indicating that multisensory superior temporal cortex, not frontal motor circuits, are critical for AV integration.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing,…
The relationship between the neurobiology of speech and music has been investigated for more than a century. There remains no widespread agreement regarding how (or to what extent) music perception utilizes the neural circuitry that is engaged in speech processing, particularly at the cortical level. Prominent models such as Patel's Shared Syntactic Integration Resource Hypothesis (SSIRH) and Koelsch's neurocognitive model of music perception suggest a high degree of overlap, particularly in the frontal lobe, but also perhaps more distinct representations in the temporal lobe with hemispheric asymmetries. The present meta-analysis study used activation likelihood estimate analyses to identify the brain regions consistently activated for music as compared to speech across the functional neuroimaging (fMRI and PET) literature. Eighty music and 91 speech neuroimaging studies of healthy adult control subjects were analyzed. Peak activations reported in the music and speech studies were divided into four paradigm categories: passive listening, discrimination tasks, error/anomaly detection tasks and memory-related tasks. We then compared activation likelihood estimates within each category for music vs. speech, and each music condition with passive listening. We found that listening to music and to speech preferentially activate distinct temporo-parietal bilateral cortical networks. We also found music and speech to have shared resources in the left pars opercularis but speech-specific resources in the left pars triangularis. The extent to which music recruited speech-activated frontal resources was modulated by task. While there are certainly limitations to meta-analysis techniques particularly regarding sensitivity, this work suggests that the extent of shared resources between speech and music may be task-dependent and highlights the need to consider how task effects may be affecting conclusions regarding the neurobiology of speech and music.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A…
Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially normalize each participant’s structural brain image to a template brain image and define ROIs using an atlas. However, in studies of individuals with structural brain lesions, such as stroke, the gold standard approach may be to manually hand-draw ROIs on each participant’s non-normalized structural brain image. Automated approaches to ROI analysis are faster and more standardized, yet are susceptible to preprocessing error (e.g., normalization error) that can be greater in lesioned brains. The manual approach to ROI analysis has high demand for time and expertise, but may provide a more accurate estimate of brain response. In this study, commonly used automated and manual approaches to ROI analysis were directly compared by reanalyzing data from a previously published hypothesis-driven cognitive fMRI study, involving individuals with stroke. The ROI evaluated is the pars opercularis of the inferior frontal gyrus. Significant differences were identified in task-related effect size and percent-activated voxels in this ROI between the automated and manual approaches to ROI analysis. Task interactions, however, were consistent across ROI analysis approaches. These findings support the use of automated approaches to ROI analysis in studies of lesioned brains, provided they employ a task interaction design.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
The label-feedback hypothesis (Lupyan, 2007) proposes that language can modulate low- and high-level visual processing, such as “priming” a visual object. Lupyan and Swingley (2012) found that repeating target names facilitates visual search, resulting in shorter reaction times (RTs)…
The label-feedback hypothesis (Lupyan, 2007) proposes that language can modulate low- and high-level visual processing, such as “priming” a visual object. Lupyan and Swingley (2012) found that repeating target names facilitates visual search, resulting in shorter reaction times (RTs) and higher accuracy. However, a design limitation made their results challenging to assess. This study evaluated whether self-directed speech influences target locating (i.e. attentional guidance) or target identification after location (i.e. decision time), testing whether the Label Feedback Effect reflects changes in visual attention or some other mechanism (e.g. template maintenance in working memory). Across three experiments, search RTs and eye movements were analyzed from four within-subject conditions. People spoke target names, nonwords, irrelevant (absent) object names, or irrelevant (present) object names. Speaking target names weakly facilitates visual search, but speaking different names strongly inhibits search. The most parsimonious account is that language affects target maintenance during search, rather than visual perception.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Language and music are fundamentally entwined within human culture. The two domains share similar properties including rhythm, acoustic complexity, and hierarchical structure. Although language and music have commonalities, abilities in these two domains have been found to dissociate after brain…
Language and music are fundamentally entwined within human culture. The two domains share similar properties including rhythm, acoustic complexity, and hierarchical structure. Although language and music have commonalities, abilities in these two domains have been found to dissociate after brain damage, leaving unanswered questions about their interconnectedness, including can one domain support the other when damage occurs? Evidence supporting this question exists for speech production. Musical pitch and rhythm are employed in Melodic Intonation Therapy to improve expressive language recovery, but little is known about the effects of music on the recovery of speech perception and receptive language. This research is one of the first to address the effects of music on speech perception. Two groups of participants, an older adult group (n=24; M = 71.63 yrs) and a younger adult group (n=50; M = 21.88 yrs) took part in the study. A native female speaker of Standard American English created four different types of stimuli including pseudoword sentences of normal speech, simultaneous music-speech, rhythmic speech, and music-primed speech. The stimuli were presented binaurally and participants were instructed to repeat what they heard following a 15 second time delay. Results were analyzed using standard parametric techniques. It was found that musical priming of speech, but not simultaneous synchronized music and speech, facilitated speech perception in both the younger adult and older adult groups. This effect may be driven by rhythmic information. The younger adults outperformed the older adults in all conditions. The speech perception task relied heavily on working memory, and there is a known working memory decline associated with aging. Thus, participants completed a working memory task to be used as a covariate in analyses of differences across stimulus types and age groups. Working memory ability was found to correlate with speech perception performance, but that the age-related performance differences are still significant once working memory differences are taken into account. These results provide new avenues for facilitating speech perception in stroke patients and sheds light upon the underlying mechanisms of Melodic Intonation Therapy for speech production.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)