Enhancing the Expression Levels of Fabs in Escherichia coli

134763-Thumbnail Image.png
Description
Enhancing the expression levels of Fabs (antigen-binding antibody fragments) in Escherichia coli is a difficult field that has a variety of potential exciting implications. The field has grown substantially in the past twenty years. The main area of difficulty is

Enhancing the expression levels of Fabs (antigen-binding antibody fragments) in Escherichia coli is a difficult field that has a variety of potential exciting implications. The field has grown substantially in the past twenty years. The main area of difficulty is facilitating the entry of the antibody fragments into the periplasm of E. Coli, where the antibody fragments can be successfully expressed. Entry into the periplasm is difficult for antibody fragments due to their inability to fold in any other section besides the periplasm. Therefore it is necessary for the antibody to enter the periplasm in an unfolded state. Background research was done into inspecting the three primary methods of periplasmic entry: the Sec-dependent pathway, the SRP-dependent pathway (signal recognition particle) and the TAT-dependent pathway (twin arginine translocase). The Sec-dependent and SRP-dependent pathways were deemed more viable for expressing antibodies due to their ability to transfer an unfolded protein into the periplasm, which the TAT-dependent pathway cannot do. Academic research showed that the Sec-dependent and SRP-dependent pathways were equally viable methods, with more research being done into the Sec-dependent pathway, particularly of the OmpA signal sequence. Physical experiments were done using typical cloning procedures with slight modifications to the ligation step (Gibson Assembly was performed instead of normal ligation). These physical experiments showed that the Sec-dependent and SRP-dependent pathways were equally viable methods of periplasmic entry. The A4 and C6 antibodies were successfully expressed using these pathways. These antibodies were expressed on an SDS gel using 10% SDS. It was hypothesized that with further experimental modifications, using different signal sequences, Fabs can be expressed at higher and more consistent level.
Date Created
2016-12
Agent

Engineering a Co-Culture of Bacteria and Yeast for the Production of Renewable p-Coumaric Acid

134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps.

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
Date Created
2016-12
Agent

Engineering a Co-culture System for Co-utilization of Lignocellulose-derived Sugars for Improved Biomass Conversion

134586-Thumbnail Image.png
Description
The inability of a single strain of bacteria to simultaneously and completely consume multiple sugars, such as glucose and xylose, hinder industrial microbial processes for ethanol and lactate production. To overcome this limitation, I am engineering an E. coli co-culture

The inability of a single strain of bacteria to simultaneously and completely consume multiple sugars, such as glucose and xylose, hinder industrial microbial processes for ethanol and lactate production. To overcome this limitation, I am engineering an E. coli co-culture system consisting of two ‘specialists'. One has the ability to only consume xylose and the other only glucose. This allows for co-utilization of lignocellulose-derived sugars so both sugars are completely consumed, residence time is reduced and lactate and ethanol titers are maximized.
Date Created
2017-05
Agent

Strategies for Recovery of Biosynthetic Styrene

Description
Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.
Date Created
2013-05
Agent

Engineering of Arson Forensics and Fire Debris Investigation: The Scientific, Social, and Curricular Impact

137722-Thumbnail Image.png
Description
Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other crimes. This issue can be attributed in part to the

Arson and intentional fires account for significant property losses and over 400 civilian deaths yearly in the United States. However, clearance rates for arson offenses remain low relative to other crimes. This issue can be attributed in part to the challenges associated with performing an arson investigation, in particular the collection and interpretation of reliable data. PLOT-cryoadsorption, a dynamic headspace sampling technique developed at the National Institute of Standards and Technology, was proposed as an alternate technique for extracting ignitable liquid residues for analysis. The method was generally shown to be robust, flexible, precise, and accurate for a variety of applications. The possibility of using a real-time in situ monitor for screening samples was also discussed. This work, conducted by an undergraduate researcher, has implications in educational curricula as well as in the field of forensic science.
Date Created
2013-05
Agent

A Study of an Inclusion Observed Under Transmission Electron Microscopy in Synechocystis sp. PCC 6803

137692-Thumbnail Image.png
Description
Transmission electron microscopy has been used to identify poly-3-hydroxybutyrate (PHB) granules in cyanobacteria for over 40 years. Electron-transparent (sometimes containing a slightly electron-dense area in the inclusions) or slightly electron-dense spherical inclusions found in transmission electron micrographs of cyanobacteria are

Transmission electron microscopy has been used to identify poly-3-hydroxybutyrate (PHB) granules in cyanobacteria for over 40 years. Electron-transparent (sometimes containing a slightly electron-dense area in the inclusions) or slightly electron-dense spherical inclusions found in transmission electron micrographs of cyanobacteria are often assumed to be PHB granules. The aim of this study was to test this assumption in Synechocystis sp. PCC 6803, and to determine whether all inclusions of this kind are indeed PHB granules. Based on the results gathered, it is concluded that not all of the slightly electron-dense spherical inclusions are PHB granules in Synechocystis sp. PCC 6803. This result is potentially applicable to other cyanobacteria.
Date Created
2013-05
Agent

Styrene Oxide Adsorption on Commercial Resins

137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli.

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
Date Created
2014-05
Agent

Optimization of the Production of Functional Antibodies to Discover Diagnostics and Therapeutics for Alzheimer's Disease

137006-Thumbnail Image.png
Description
Alzheimer's disease (AD), which currently affects approximately 5.4 million Americans, is a type of dementia, which causes memory, cognitive, and behavioral problems. AD is among the top 10 leading causes of death in the United States, typically affecting people ages

Alzheimer's disease (AD), which currently affects approximately 5.4 million Americans, is a type of dementia, which causes memory, cognitive, and behavioral problems. AD is among the top 10 leading causes of death in the United States, typically affecting people ages 65 and older. Beta-Amyloid (Aβ) is an Alzheimer's target protein, which starts as a single protein, but can misfold and bind to itself, forming larger chains and eventually fibrils and plaques of Aβ in the brain. Antibodies that bind to different regions and sizes of Aβ may prevent progression into a more toxic stage. The antibody worked with in this thesis, A4 scFv, binds to oligomeric Aβ. The objective of this antibody research is to optimize the production of functional antibodies, specifically A4, through modifications in the scFv growth process, in order to enhance the discovery of possible diagnostics and therapeutics for Alzheimer's disease. In order to produce functional A4 antibody, four complex sugars were tested in the E. Coli bacterial culture growth media that expresses the desired antibody. The sugars: sucrose, glucose, mannitol, and sorbitol were used in the growth process to improve the yield of functional antibody. Through the steps of growth, purification, and dialysis, the sugar sorbitol was found to provide the optimal results of ending functional antibody concentration. Once an ample amount of functional A4 scFv is produced, it can be used in assays as a biomarker for Alzheimer's disease.
Date Created
2014-05
Agent

Analysis of Free Standing Zeolitic Imidazolate Framework Inclusion Nano Composite (ZIFINC) Membranes on Ethanol/Water Separations

136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
Date Created
2015-05
Agent

Controlling Light Intensity in Outdoor Photobioreactors

136510-Thumbnail Image.png
Description
This thesis focused on the development of a system that can sense light intensity and then control a smart film to provide the optimal light intensity for cyanobacteria. The overarching goal of this project is to further the study of

This thesis focused on the development of a system that can sense light intensity and then control a smart film to provide the optimal light intensity for cyanobacteria. The overarching goal of this project is to further the study of biofuels as an alternative energy source by increasing growth rates. If more algae or cyanobacteria can be grown per day, then the cost to produce the biofuel will decrease. To achieve this goal, PDLC (polymer dispersed liquid crystal) film was selected to be controlled due to its unique properties. It can be controlled with electricity and has variable states, in other words, not restricted to simply on or off. It also blocks 80% ultraviolet light and reduces thermal heat gain by 40% which is an important consideration for outdoor growing situations. To control the film, a simple control system was created using an Arduino Uno, SainSmart 8 channel relay board, an inverter, and a power supply. A relay board was utilized to manage the 40 volts required by the PDLC film and protected the electronics on the Arduino Uno. To sense the light intensity, the Arduino Uno was connected to a photoresistor, which changes resistance with light intensity. A 15 day test of two flasks of Cyanobacteria Synechocycstis sp. 6803, one shaded by the PDLC film, and the other unshaded, yielded 65% difference in optical densities. Overall, the experiment showed promise for controlling light intensity for photobioreactors. Ideally, this research will help to optimize light intensities when growing cyanobacteria or algae outdoors or it will help to discover what an ideal light intensity is by allowing a researcher unprecedented control.
Date Created
2015-05
Agent