Scientific research encompasses a variety of objectives, including measurement, making predictions, identifying laws, and more. The advent of advanced measurement technologies and computational methods has largely automated the processes of big data collection and prediction. However, the discovery of laws,…
Scientific research encompasses a variety of objectives, including measurement, making predictions, identifying laws, and more. The advent of advanced measurement technologies and computational methods has largely automated the processes of big data collection and prediction. However, the discovery of laws, particularly universal ones, still heavily relies on human intellect. Even with human intelligence, complex systems present a unique challenge in discerning the laws that govern them. Even the preliminary step, system description, poses a substantial challenge. Numerous metrics have been developed, but universally applicable laws remain elusive. Due to the cognitive limitations of human comprehension, a direct understanding of big data derived from complex systems is impractical. Therefore, simplification becomes essential for identifying hidden regularities, enabling scientists to abstract observations or draw connections with existing knowledge. As a result, the concept of macrostates -- simplified, lower-dimensional representations of high-dimensional systems -- proves to be indispensable. Macrostates serve a role beyond simplification. They are integral in deciphering reusable laws for complex systems. In physics, macrostates form the foundation for constructing laws and provide building blocks for studying relationships between quantities, rather than pursuing case-by-case analysis. Therefore, the concept of macrostates facilitates the discovery of regularities across various systems. Recognizing the importance of macrostates, I propose the relational macrostate theory and a machine learning framework, MacroNet, to identify macrostates and design microstates. The relational macrostate theory defines a macrostate based on the relationships between observations, enabling the abstraction from microscopic details. In MacroNet, I propose an architecture to encode microstates into macrostates, allowing for the sampling of microstates associated with a specific macrostate. My experiments on simulated systems demonstrate the effectiveness of this theory and method in identifying macrostates such as energy. Furthermore, I apply this theory and method to a complex chemical system, analyzing oil droplets with intricate movement patterns in a Petri dish, to answer the question, ``which combinations of parameters control which behavior?'' The macrostate theory allows me to identify a two-dimensional macrostate, establish a mapping between the chemical compound and the macrostate, and decipher the relationship between oil droplet patterns and the macrostate.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural…
A central question in cognitive neuroscience is how unitary, coherent decisions at the whole organism level can arise from the distributed behavior of a large population of neurons with only partially overlapping information. We address this issue by studying neural spiking behavior recorded from a multielectrode array with 169 channels during a visual motion direction discrimination task. It is well known that in this task there are two distinct phases in neural spiking behavior. Here we show Phase I is a distributed or incompressible phase in which uncertainty about the decision is substantially reduced by pooling information from many cells. Phase II is a redundant or compressible phase in which numerous single cells contain all the information present at the population level in Phase I, such that the firing behavior of a single cell is enough to predict the subject's decision. Using an empirically grounded dynamical modeling framework, we show that in Phase I large cell populations with low redundancy produce a slow timescale of information aggregation through critical slowing down near a symmetry-breaking transition. Our model indicates that increasing collective amplification in Phase II leads naturally to a faster timescale of information pooling and consensus formation. Based on our results and others in the literature, we propose that a general feature of collective computation is a “coding duality” in which there are accumulation and consensus formation processes distinguished by different timescales.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
Many adaptive systems sit near a tipping or critical point. For systems near a critical point small changes to component behaviour can induce large-scale changes in aggregate structure and function. Criticality can be adaptive when the environment is changing, but…
Many adaptive systems sit near a tipping or critical point. For systems near a critical point small changes to component behaviour can induce large-scale changes in aggregate structure and function. Criticality can be adaptive when the environment is changing, but entails reduced robustness through sensitivity. This tradeoff can be resolved when criticality can be tuned. We address the control of finite measures of criticality using data on fight sizes from an animal society model system (Macaca nemestrina, n=48). We find that a heterogeneous, socially organized system, like homogeneous, spatial systems (flocks and schools), sits near a critical point; the contributions individuals make to collective phenomena can be quantified; there is heterogeneity in these contributions; and distance from the critical point (DFC) can be controlled through biologically plausible mechanisms exploiting heterogeneity. We propose two alternative hypotheses for why a system decreases the distance from the critical point.
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)