Patterns of food and physical activity environments related to children's food and activity behaviors: A latent class analysis

161035-Thumbnail Image.png
Description

Relationships between food and physical activity (PA) environments and children's related behaviors are complex.

Latent class analyses derived patterns from proximity to healthy and unhealthy food outlets, PA facilities and parks, and counts of residential dwellings and intersections. Regression analyses examined

Relationships between food and physical activity (PA) environments and children's related behaviors are complex.

Latent class analyses derived patterns from proximity to healthy and unhealthy food outlets, PA facilities and parks, and counts of residential dwellings and intersections. Regression analyses examined whether derived classes were related to food consumption, PA, and overweight among 404 low-income children.

Compared to children living in Low PA-Low Food environments, children in High Intersection&Parks-Moderate Density&Food, and High Density-Low Parks-High Food environments, had significantly greater sugar-sweetened beverage consumption (ps<0.01) and overweight/obesity (ps<0.001). Children in the High Density-Low Parks-High Food environments were more likely to walk to destinations (p = 0.01)

Recognizing and leveraging beneficial aspects of neighborhood patterns may be more effective at positively influencing children's eating and PA behaviors compared to isolating individual aspects of the built environment.

Date Created
2017-11-02
Agent

Improving Sleep Bout Detection from a Thigh-Worn Accelerometer in Young Adults

132057-Thumbnail Image.png
Description
Introduction: There is currently a lack of industry-wide gold standardization in accelerometer study
protocols, including within sleep-focused studies. This study seeks to address accuracy of
accelerometer data in detection of the beginnings and ends of sleep bouts in young adults

Introduction: There is currently a lack of industry-wide gold standardization in accelerometer study
protocols, including within sleep-focused studies. This study seeks to address accuracy of
accelerometer data in detection of the beginnings and ends of sleep bouts in young adults with
polysomnography (PSG) corroboration. An existing algorithm used to differentiate valid/invalid wear
time and detect bouts of sleep has been modified with the goal of maximizing accuracy of sleep bout
detection. Methods: Three key decisions and thresholds of the algorithm have been modified with three
experimental values each being tested. The main experimental variable Sleepwindow controls the
amount of time before and after a determined bout of sleep that is searched for additional sedentary
time to incorporate and consider part of the same sleep bout. Results were compared to PSG and sleep
diary data for absolute agreement of sleep bout start time (START), end time (END) and time in bed
(TIB). Adjustments were made for outliers as well as sleep latency, snooze time, and the sum of both.
Results: Only adjustments made to a sleep window variable yielded altered results. Between a 5-, 15-,
and 30-minute window, a 15-minute window incurred the least error and most agreement to
comparisons for START, while a 5-minute window was best for END and TIB. Discussion: Contrary
to expectation, corrections for snooze, latency, and both did not substantially improve agreement to
PSG. Algorithm-derived estimates of START and END always fell after sleep diary and PSG both,
suggesting either participants’ sedentary behavior beginning and ends were at a delay from sleep and
wake times, or the algorithm estimates consistently later times than appropriate. The inclusion of a
sleep window variable yields substantial variety in results. A 15-minute window appears best at
determining START while a 5-minute window appears best for END and TIB. Further investigation on
the optimal window length per demographic and condition is required.
Date Created
2019-12
Agent

Flexibility: An Optimal Range to Minimize Injury Risk

135316-Thumbnail Image.png
Description
Stretching and flexibility are important components of athletic performance and general fitness. Though many individuals and athletic professionals take into account flexibility, the concept that a certain range of joint motion places one at an increased risk of injury has

Stretching and flexibility are important components of athletic performance and general fitness. Though many individuals and athletic professionals take into account flexibility, the concept that a certain range of joint motion places one at an increased risk of injury has not been fully explored. This paper seeks to review the research on hip, shoulder, ankle, and spine ranges of motion that increase risk of injury to an athlete, it seeks to provide information on the best way to increase flexibility and range of motion. While this paper provides an insight as to what these potential ranges are, the overall research in the area is lacking and further research is suggested.
Date Created
2016-05
Agent

Online Versus In-Person Comparison of Microscale Audit of Pedestrian Streetscapes (MAPS) Assessments: Reliability of Alternate Methods

128129-Thumbnail Image.png
Description

Background: An online version of the Microscale Audit of Pedestrian Streetscapes (Abbreviated) tool was adapted to virtually audit built environment features supportive of physical activity. The current study assessed inter-rater reliability of MAPS Online between in-person raters and online raters unfamiliar

Background: An online version of the Microscale Audit of Pedestrian Streetscapes (Abbreviated) tool was adapted to virtually audit built environment features supportive of physical activity. The current study assessed inter-rater reliability of MAPS Online between in-person raters and online raters unfamiliar with the regions.

Methods: In-person and online audits were conducted for a total of 120 quarter-mile routes (60 per site) in Phoenix, AZ and San Diego, CA. Routes in each city included 40 residential origins stratified by walkability and SES, and 20 commercial centers. In-person audits were conducted by raters residing in their region. Online audits were conducted by raters in the alternate location using Google Maps (Aerial and Street View) images. The MAPS Abbreviated Online tool consisted of four sections: overall route, street segments, crossings and cul-de-sacs. Items within each section were grouped into subscales, and inter-rater reliability (ICCs) was assessed for subscales at multiple levels of aggregation.

Results: Online and in-person audits showed excellent agreement for overall positive microscale (ICC = 0.86, 95% CI [0.80, 0.90]) and grand scores (ICC = 0.93, 95% CI [0.89, 0.95]). Substantial to near-perfect agreement was found for 21 of 30 (70%) subscales, valence, and subsection scores, with ICCs ranging from 0.62, 95% CI [0.50, 0.72] to 0.95, 95% CI [0.93, 0.97]. Lowest agreement was found for the aesthetics and social characteristics scores, with ICCs ranging from 0.07, 95% CI [−0.12, 0.24] to 0.27, 95% CI [0.10, 0.43].

Conclusions: Results support use of the MAPS Abbreviated Online tool to reliably assess microscale neighborhood features that support physical activity and may be used by raters residing in different geographic regions and unfamiliar with the audit areas.

Date Created
2017-08-04
Agent

Validity of the Rapid Eating Assessment for Patients for assessing dietary patterns in NCAA athletes

130353-Thumbnail Image.png
Description
Background
Athletes may be at risk for developing adverse health outcomes due to poor eating behaviors during college. Due to the complex nature of the diet, it is difficult to include or exclude individual food items and specific food groups from

Background
Athletes may be at risk for developing adverse health outcomes due to poor eating behaviors during college. Due to the complex nature of the diet, it is difficult to include or exclude individual food items and specific food groups from the diet. Eating behaviors may better characterize the complex interactions between individual food items and specific food groups. The purpose was to examine the Rapid Eating Assessment for Patients survey (REAP) as a valid tool for analyzing eating behaviors of NCAA Division-I male and female athletes using pattern identification. Also, to investigate the relationships between derived eating behavior patterns and body mass index (BMI) and waist circumference (WC) while stratifying by sex and aesthetic nature of the sport.
Methods
Two independent samples of male (n = 86; n = 139) and female (n = 64; n = 102) collegiate athletes completed the REAP in June-August 2011 (n = 150) and June-August 2012 (n = 241). Principal component analysis (PCA) determined possible factors using wave-1 athletes. Exploratory (EFA) and confirmatory factor analyses (CFA) determined factors accounting for error and confirmed model fit in wave-2 athletes. Wave-2 athletes' BMI and WC were recorded during a physical exam and sport participation determined classification in aesthetic and non-aesthetic sport. Mean differences in eating behavior pattern score were explored. Regression models examined interactions between pattern scores, participation in aesthetic or non-aesthetic sport, and BMI and waist circumference controlling for age and race.
Results
A 5-factor PCA solution accounting for 60.3% of sample variance determined fourteen questions for EFA and CFA. A confirmed solution revealed patterns of Desserts, Healthy food, Meats, High-fat food, and Dairy. Pattern score (mean ± SE) differences were found, as non-aesthetic sport males had a higher (better) Dessert score than aesthetic sport males (2.16 ± 0.07 vs. 1.93 ± 0.11). Female aesthetic athletes had a higher score compared to non-aesthetic female athletes for the Dessert (2.11 ± 0.11 vs. 1.88 ± 0.08), Meat (1.95 ± 0.10 vs. 1.72 ± 0.07), High-fat food (1.70 ± 0.08 vs. 1.46 ± 0.06), and Dairy (1.70 ± 0.11 vs. 1.43 ± 0.07) patterns.
Conclusions
REAP is a construct valid tool to assess dietary patterns in college athletes. In light of varying dietary patterns, college athletes should be evaluated for healthful and unhealthful eating behaviors.
Date Created
2014-08-15
Agent

Feasibility of three wearable sensors for 24 hour monitoring in middle-aged women

130366-Thumbnail Image.png
Description
Background
The purpose of this study is to determine the feasibility of three widely used wearable sensors in research settings for 24 h monitoring of sleep, sedentary, and active behaviors in middle-aged women.
Methods
Participants were 21 inactive, overweight (M Body Mass Index

Background
The purpose of this study is to determine the feasibility of three widely used wearable sensors in research settings for 24 h monitoring of sleep, sedentary, and active behaviors in middle-aged women.
Methods
Participants were 21 inactive, overweight (M Body Mass Index (BMI) = 29.27 ± 7.43) women, 30 to 64 years (M = 45.31 ± 9.67). Women were instructed to wear each sensor on the non-dominant hip (ActiGraph GT3X+), wrist (GENEActiv), or upper arm (BodyMedia SenseWear Mini) for 24 h/day and record daily wake and bed times for one week over the course of three consecutive weeks. Women received feedback about their daily physical activity and sleep behaviors. Feasibility (i.e., acceptability and demand) was measured using surveys, interviews, and wear time.
Results
Women felt the GENEActiv (94.7 %) and SenseWear Mini (90.0 %) were easier to wear and preferred the placement (68.4, 80 % respectively) as compared to the ActiGraph (42.9, 47.6 % respectively). Mean wear time on valid days was similar across sensors (ActiGraph: M = 918.8 ± 115.0 min; GENEActiv: M = 949.3 ± 86.6; SenseWear: M = 928.0 ± 101.8) and well above other studies using wake time only protocols. Informational feedback was the biggest motivator, while appearance, comfort, and inconvenience were the biggest barriers to wearing sensors. Wear time was valid on 93.9 % (ActiGraph), 100 % (GENEActiv), and 95.2 % (SenseWear) of eligible days. 61.9, 95.2, and 71.4 % of participants had seven valid days of data for the ActiGraph, GENEActiv, and SenseWear, respectively.
Conclusion
Twenty-four hour monitoring over seven consecutive days is a feasible approach in middle-aged women. Researchers should consider participant acceptability and demand, in addition to validity and reliability, when choosing a wearable sensor. More research is needed across populations and study designs.
Date Created
2015-07-30
Agent