Does Online "Working Out Work" as a Treatment and Prevention for Depression in Older Adults?

141148-Thumbnail Image.png
Description

RESEARCH QUESTION: Does Online "Working Out Work" as a Treatment and Prevention for Depression in Older Adults? An Analysis of a Prescribed and Monitored Exercise Program Administered via the Internet for Senior Adults with Depression.
OBJECTIVE: The purpose of this study

RESEARCH QUESTION: Does Online "Working Out Work" as a Treatment and Prevention for Depression in Older Adults? An Analysis of a Prescribed and Monitored Exercise Program Administered via the Internet for Senior Adults with Depression.
OBJECTIVE: The purpose of this study is to investigate and access the effectiveness of an online prescribed and monitored exercise program for the treatment of depression in Older Adults. The Dependent Variable for the study is Depression. The Independent Variable for the study is the Effects of Exercise administered via the Internet and the population is geriatric adults defined as senior adults aged 50 and older. Depression is defined by Princeton University Scholars (Wordnet, 2006) as a mental state characterized by a pessimistic sense of inadequacy and a despondent lack of activity.
METHODS: The presence and severity of depression will be assessed by using The Merck Manual of Geriatrics (GDS-15) Geriatric Depression Scale. Assessments will be performed at baseline, before and after the treatment is concluded. The subjects will complete the Physical Activity Readiness Questionnaire (PAR-Q) prior to participating in an exercise program three times per week.
LIMITATIONS OF RESEARCH: The limitations of this study are: 1) There is a small sample size limited to Senior Adults aged 50 - 80, and 2) there is no control group with structured activity or placebo, therefore researcher is unable to evaluate if the marked improvement was due to a non-specific therapeutic effect associated with taking part in a social activity (group online exercise program). Further research could compare and analyze the positive effects of a muscular strength training exercise program verses a cardiovascular training exercise program.

Date Created
2011-05-02
Agent

Rapid Urban Growth in the Kathmandu Valley, Nepal: Monitoring Land Use Land Cover Dynamics of a Himalayan City With Landsat Imageries

127842-Thumbnail Image.png
Description

The Kathmandu Valley of Nepal epitomizes the growing urbanization trend spreading across the Himalayan foothills. This metropolitan valley has experienced a significant transformation of its landscapes in the last four decades resulting in substantial land use and land cover (LULC)

The Kathmandu Valley of Nepal epitomizes the growing urbanization trend spreading across the Himalayan foothills. This metropolitan valley has experienced a significant transformation of its landscapes in the last four decades resulting in substantial land use and land cover (LULC) change; however, no major systematic analysis of the urbanization trend and LULC has been conducted on this valley since 2000. When considering the importance of using LULC change as a window to study the broader changes in socio-ecological systems of this valley, our study first detected LULC change trajectories of this valley using four Landsat images of the year 1989, 1999, 2009, and 2016, and then analyzed the detected change in the light of a set of proximate causes and factors driving those changes. A pixel-based hybrid classification (unsupervised followed by supervised) approach was employed to classify these images into five LULC categories and analyze the LULC trajectories detected from them. Our results show that urban area expanded up to 412% in last three decades and the most of this expansion occurred with the conversions of 31% agricultural land. The majority of the urban expansion happened during 1989–2009, and it is still growing along the major roads in a concentric pattern, significantly altering the cityscape of the valley. The centrality feature of Kathmandu valley and the massive surge in rural-to-urban migration are identified as the primary proximate causes of the fast expansion of built-up areas and rapid conversions of agricultural areas.

Date Created
2017-10-08
Agent

Prebiotic RNA Network Formation: A Taxonomy of Molecular Cooperation

127846-Thumbnail Image.png
Description

Cooperation is essential for evolution of biological complexity. Recent work has shown game theoretic arguments, commonly used to model biological cooperation, can also illuminate the dynamics of chemical systems. Here we investigate the types of cooperation possible in a real

Cooperation is essential for evolution of biological complexity. Recent work has shown game theoretic arguments, commonly used to model biological cooperation, can also illuminate the dynamics of chemical systems. Here we investigate the types of cooperation possible in a real RNA system based on the Azoarcus ribozyme, by constructing a taxonomy of possible cooperative groups. We construct a computational model of this system to investigate the features of the real system promoting cooperation. We find triplet interactions among genotypes are intrinsically biased towards cooperation due to the particular distribution of catalytic rate constants measured empirically in the real system. For other distributions cooperation is less favored. We discuss implications for understanding cooperation as a driver of complexification in the origin of life.

Date Created
2017-10-16
Agent

Physical Universality, State-Dependent Dynamical Laws and Open-Ended Novelty

130252-Thumbnail Image.png
Description
A major conceptual step forward in understanding the logical architecture of living systems was advanced by von Neumann with his universal constructor, a physical device capable of self-reproduction. A necessary condition for a universal constructor to exist is that the

A major conceptual step forward in understanding the logical architecture of living systems was advanced by von Neumann with his universal constructor, a physical device capable of self-reproduction. A necessary condition for a universal constructor to exist is that the laws of physics permit physical universality, such that any transformation (consistent with the laws of physics and availability of resources) can be caused to occur. While physical universality has been demonstrated in simple cellular automata models, so far these have not displayed a requisite feature of life—namely open-ended evolution—the explanation of which was also a prime motivator in von Neumann’s formulation of a universal constructor. Current examples of physical universality rely on reversible dynamical laws, whereas it is well-known that living processes are dissipative. Here we show that physical universality and open-ended dynamics should both be possible in irreversible dynamical systems if one entertains the possibility of state-dependent laws. We demonstrate with simple toy models how the accessibility of state space can yield open-ended trajectories, defined as trajectories that do not repeat within the expected Poincaré recurrence time and are not reproducible by an isolated system. We discuss implications for physical universality, or an approximation to it, as a foundational framework for developing a physics for life.
Date Created
2017-09-01
Agent

The Pentaquark Candidates in the Dynamical Diquark Picture

127849-Thumbnail Image.png
Description

Starting with the dynamical picture of the exotic c[¯over c]-containing states XYZas the confinement-induced hadronization of a rapidly separating pair of a compact diquark and antidiquark, we describe the pentaquark candidates P[+ over c](4380)and P[+ over c](4450)in terms of a

Starting with the dynamical picture of the exotic c[¯over c]-containing states XYZas the confinement-induced hadronization of a rapidly separating pair of a compact diquark and antidiquark, we describe the pentaquark candidates P[+ over c](4380)and P[+ over c](4450)in terms of a confined but rapidly separating color-antitriplet diquark cuand color-triplet “triquark” [¯ over c](ud). This separation explains the relatively small P[+ over c] widths, despite these 5-quark systems lying far above both the J/ψp and Ac [¯ over D](∗)0 thresholds. The P[+ over c] states are predicted to form isospin doublets with neutral partners P[0 over c].

Date Created
2015-08-17
Agent

On the Association Between Weather Variability and Total and Cause-Specific Mortality Before and During Industrialization in Sweden

127858-Thumbnail Image.png
Description

Background: While there is ample evidence for health risks associated with heat and other extreme weather events today, little is known about the impact of weather patterns on population health in preindustrial societies.

Objective: To investigate the impact of weather patterns

Background: While there is ample evidence for health risks associated with heat and other extreme weather events today, little is known about the impact of weather patterns on population health in preindustrial societies.

Objective: To investigate the impact of weather patterns on population health in Sweden before and during industrialization.

Methods: We obtained records of monthly mortality and of monthly mean temperatures and precipitation for Skellefteå parish, northern Sweden, for the period 1800-1950. The associations between monthly total mortality, as well as monthly mortality due to infectious and cardiovascular diseases, and monthly mean temperature and cumulative precipitation were modelled using a time series approach for three separate periods, 1800−1859, 1860-1909, and 1910-1950.

Results: We found higher temperatures and higher amounts of precipitation to be associated with lower mortality both in the medium term (same month and two-months lag) and in the long run (lag of six months up to a year). Similar patterns were found for mortality due to infectious and cardiovascular diseases. Furthermore, the effect of temperature and precipitation decreased over time.

Conclusions: Higher temperature and precipitation amounts were associated with reduced death counts with a lag of up to 12 months. The decreased effect over time may be due to improvements in nutritional status, decreased infant deaths, and other changes in society that occurred in the course of the demographic and epidemiological transition.

Contribution: The study contributes to a better understanding of the complex relationship between weather and mortality and, in particular, historical weather-related mortality.

Date Created
2016-10-05
Agent

On Factorization of Multiparticle Pentagons

127860-Thumbnail Image.png
Description

We address the near-collinear expansion of multiparticle NMHV amplitudes, namely, the heptagon and octagons in the dual language of null polygonal super Wilson loops. In particular, we verify multiparticle factorization of charged pentagon transitions in terms of pentagons for single

We address the near-collinear expansion of multiparticle NMHV amplitudes, namely, the heptagon and octagons in the dual language of null polygonal super Wilson loops. In particular, we verify multiparticle factorization of charged pentagon transitions in terms of pentagons for single flux-tube excitations within the framework of refined operator product expansion. We find a perfect agreement with available tree and one-loop data.

Date Created
2015-06-03
Agent

Observation and Simulation of Wave Breaking in the Southern Hemispheric Stratosphere During VORCORE

127861-Thumbnail Image.png
Description

An interesting occurrence of a Rossby wave breaking event observed during the VORCORE experiment is presented and explained. Twenty-seven balloons were launched inside the Antarctic polar vortex. Almost all of these balloons evolved in the stratosphere around 500K within the

An interesting occurrence of a Rossby wave breaking event observed during the VORCORE experiment is presented and explained. Twenty-seven balloons were launched inside the Antarctic polar vortex. Almost all of these balloons evolved in the stratosphere around 500K within the vortex, except the one launched on 28 October 2005. In this case, the balloon was caught within a tongue of high potential vorticity (PV), and was ejected from the polar vortex. The evolution of this event is studied for the period between 19 and 25 November 2005. It is found that at the beginning of this period, the polar vortex experienced distortions due to the presence of Rossby waves. Then, these waves break and a tongue of high PV develops. On 25 November, the tongue became separated from the vortex and the balloon was ejected into the surf zone. Lagrangian simulations demonstrate that the air masses surrounding the balloon after its ejection were originating from the vortex edge. The wave breaking and the development of the tongue are confined within a region where a planetary Quasi-Stationary Wave 1 (QSW1) induces wind speeds with weaker values. The QSW1 causes asymmetry in the wind speed and the horizontal PV gradient along the edge of the polar vortex, resulting in a localized jet. Rossby waves with smaller scales propagating on top of this jet amplify as they enter the jet exit region and then break. The role of the QSW1 on the formation of the weak flow conditions that caused the non-linear wave breaking observed near the vortex edge is confirmed by three-dimensional numerical simulations using forcing with and without the contribution of the QSW1.

Date Created
2013-04-16
Agent

Nonsinglet Pentagons and NMHV Amplitudes

127862-Thumbnail Image.png
Description

Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on

Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

Date Created
2015-05-05
Agent

Nonperturbative Enhancement of Superloop at Strong Coupling

127864-Thumbnail Image.png
Description

We address the near-collinear expansion of NMHV six-particle scattering amplitudes at strong value of the 't Hooft coupling in planar maximally supersymmetric Yang–Mills theory. We complement recent studies of this observable within the context of the Pentagon Operator Product Expansion,

We address the near-collinear expansion of NMHV six-particle scattering amplitudes at strong value of the 't Hooft coupling in planar maximally supersymmetric Yang–Mills theory. We complement recent studies of this observable within the context of the Pentagon Operator Product Expansion, via the dual superWilson loop description, by studying effects of multiple scalar exchanges that accompany (or not) massive flux-tube excitations. Due to the fact that holes have a very small, nonperturbatively generated mass mh which is exponentially suppressed in the 't Hooft coupling, their exchanges must be resummed in the ultraviolet limit, T <<1/mh. This procedure yields a contribution to the expectation value of the superloop which enters on equal footing with the classical area — a phenomenon which was earlier observed for MHV amplitudes. In all components, the near-massless scalar exchanges factorize from the ones of massive particles, at leading order in strong coupling.

Date Created
2016-08-20
Agent